定义1:分割
在区间\([a,b]\)上,记分割
\[ \pi : a = x_0 < x_1 < \cdots < x_n = b \]
把\([a,b]\)分成\(n\)个小区间\([x_{i-1},x_i]\),其长度为\(\Delta x_i = x_i - x_{i-1} (i=-1,2,\cdots,n)\)。并称\(\{x_0, x_1, \cdots,x_n\}\)为\(\pi\)的分点序列。令
\[ \Vert \pi \Vert = \max \limits_{1 \le i \le n} \{ \Delta x_i \} \]
称\(\Vert \pi \Vert\)为分割\(\pi\)的宽度。