定义1:函数在某点处极限
设函数\(f\)在点\(x_0\)的近旁有定义,但\(x_0\)这一点自身可以是例外,设\(l\)是一个实数,如果对\(\forall \varepsilon > 0\),\(\exists \delta>0\),使得对一切满足等式\(0 < |x-x_0| < \delta\)都有
\[ |f(x) - l| < \varepsilon \]
则称当\(x\)趋于点\(x_0\)时函数\(f\)有极限\(l\),记作
\[ \lim \limits_{x \to x_0} f(x) = l \]
也可以记作
\[ f(x) \to l (x \to x_0) \]