0%

leetcode题解72:编辑距离

描述

该题来自于力扣第72题

分析

典型的动态规划题,用dp[i][j]表示word1[:i]word2[:j]的最小编辑距离,可知i=0j=0表示其中一个是空串,而任意字符串与空串word之间的编辑距离肯定是word的长度,从而dp[0][j]=j, dp[i][0]=i,而对于i>0,j>0,可以直到dp[i][j]必然是一下三种情况的最小值:
1. dp[i][j-1]+1
2. dp[i-1][j]+1
3. dp[i-1][j-1]+neq(word1[i-1], word2[j-1])

其中neq(a, b)表示当a等于b时取0,或者取1;按照上面的方式就已经可以写代码了,但是其实可以再简化一个转移方程为:
\[ dp[i][j] = \left \{ \begin{aligned} & dp[i-1][j-1] & \text{word1}[i-1]=\text{word1}[j-1] \\ & \min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1 & others \end{aligned} \right. \]

代码

python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
dp = [[0 for _ in range(len(word2) + 1)] for _ in range(len(word1) + 1)]
for i in range(1, len(word1) + 1):
dp[i][0] = i
for j in range(1, len(word2) + 1):
dp[0][j] = j
for i in range(1, len(word1)+1):
for j in range(1, len(word2)+1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
return dp[-1][-1]