0%

leetcode题解37:解数独

描述

该题来自于力扣第37题

分析

典型的深度优先遍历,假设递归函数为solve,那么递归的方式为:
1. 进入递归solve
2. 遍历board,找到待补充的区域,记作(i, j)
3. 找到(i,j)的所有可选数字,记作candidate_nums,遍历所有candidate_nums,若对当前遍历的数字n,将board[i][j]=n,然后判断solve函数返回值,若为True,即表示成功解决数独,函数返回True
4. 若遍历完所有candidate_nums,结果还是没有返回True,则表示前面的数字有误,则回溯还原现场board[i][j]=".",并且函数返回False,这样会回到递归上一层
5. 最终由于函数遍历完所有的待补充区域了,所以直接返回True

代码

python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution:
def solveSudoku(self, board: List[List[str]]) -> None:
"""
Do not return anything, modify board in-place instead.
"""
def find_possible_number(board, i, j):
all_number = set(map(str, range(1, 10)))
for index in range(9):
if board[index][j] != ".":
all_number.discard(board[index][j])
if board[i][index] != ".":
all_number.discard(board[i][index])
row = i // 3
col = j // 3
for m in range(row*3, (row+1)*3):
for n in range(col*3, (col+1)*3):
if board[m][n] != ".":
all_number.discard(board[m][n])
return all_number

def solve(board):
for i in range(9):
for j in range(9):
if board[i][j] == ".":
for n in find_possible_number(board, i, j):
board[i][j] = n
if solve(board):
return True
board[i][j] = "."
return False
return True

solve(board)