0%

数学试题四:高中篇3

$201. $ 已知椭圆\(\displaystyle C: \frac{x^2}{4} + \frac{y^2}{3} = 1\),过点\(Q(4, 0)\)且不与坐标轴垂直的直线\(l\)交椭圆于\(A,B\)两点,设点\(A\)关于\(x\)轴对称为点\(A^\prime\),则
(1)求证:直线\(A^\prime B\)过一定点;
(2)求\(\triangle OA^\prime B\)面积的取值范围。

$202. $ 过椭圆的左焦点\(F\),倾斜角为\(60^\circ\)的直线交椭圆于\(A,B\)两点,\(A,F,B\)从上到下排列,且\(|FA| = 2|FB|\),则该椭圆的离心率\(e=\)

$203. $ 已知直线\(3x \sin^2 \theta + y(1 + \cos 2\theta) = 12 (\theta \in \mathbb{R})\),则以原点为圆心且与该直线相切的圆的面积的最大值为?

$204. $ 已知数列\(\{a_n\}\)中,\(\displaystyle a_1 = 1, \frac{a_n}{n} - \frac{a_{n-1}}{n-1} = 2 * 3^{n-2} (n \ge 2)\)
(1)令\(\displaystyle b_n = \frac{3^{n-1}}{a_n}\),数列\(\{b_n\}\)的前\(n\)项和\(S_n\),比较\(S_{2^n}\)\(n\)的大小;
(2)令\(\displaystyle c_n = \frac{a_{n+1}}{n+1}\),数列\(\displaystyle \{ \frac{2c_n}{(c_n-1)^2} \}\)的前\(n\)项和为\(T_n\),求证\(T_n < 2\)

$205. $ 已知椭圆\(\displaystyle C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)\),直线\(l\)为圆\(O: x^2 + y^2 = b^2\)的一条切线且经过椭圆的右焦点,设椭圆\(C\)的离心率为\(e\)
(1)若直线\(l\)的倾斜角为\(30^\circ\),求\(e\)的值;
(2)是否存在这样的\(e\),使得原点\(O\)关于直线\(l\)的对称点恰好在椭圆上?若存在,请求出\(e\)的值;若不存在,请说明理由。

$206. $ 已知\(a_n = (4n-1)(4n+1)(4n+3)\),求证\(\displaystyle \frac{1}{\sqrt {a_1}} + \frac{1}{\sqrt {a_2}} + \cdots + \frac{1}{\sqrt {a_n}} < \frac{\sqrt 3}{6}\)

$207. $ 已知椭圆\(\displaystyle C: \frac{x^2}{4} + \frac{y^2}{3} = 1\)\(A\)为椭圆\(C\)的左顶点,过\(F_2(1, 0)\)的直线交椭圆于\(M,N\)两点,且\(M,N\)均不在\(x\)轴上,设直线\(AM,AN\)的斜率分别为\(k_1,k_2\),求\(k_1k_2\)的值。

$208. $ 求证:\([(n+1)!]^2 > (n+1)e^{n-2}, (n \in \mathbb{N^+})\)

$209. $ 已知函数\(f(x) = -a\cos2x - \sqrt3 a \sin 2x + 2a + b\),其中\(\displaystyle a>0, x \in [0, \frac{\pi}{2}], -5 \le f(x) \le 1\),则当\(t \in [-1, 0]\)时,\(g(t) = at^2 + bt - 3\)的最小值是?

$210. $ 已知\(\alpha, \beta\)是一个钝角三角形的两个锐角,求证:
(1)\(\tan \alpha + \tan \beta < 1\)
(2)\(\sin \alpha + \sin \beta < \sqrt 2\)
(3)\(\cos \alpha + \cos \beta > 1\)
(4)\(\displaystyle \frac{1}{2} \tan(\alpha + \beta) > \tan \frac{\alpha + \beta}{2}\)

$211. $ 求\(\displaystyle \sin^2 \alpha sin^2 \beta + \cos^2 \alpha \cos^2 \beta - \frac{1}{2} \cos 2\alpha \cos 2\beta\)的值。

$212. $ 证明:当\(a > 0\)时,\(\displaystyle \sqrt {a^2 + \frac{1}{a^2}} \ge a + \frac{1}{a} - 2\)

$213. $ 若三角形\(\triangle ABC\)的三边长都是有理数,证明:对任意正整数\(n\)\(\cos nA\)是有理数。

$214. $ 已知\(a,b,c \in \mathbb{R}\)\(a + b + c > 0, ab + bc + ac > 0, abc > 0\),求证\(a > 0,b > 0, c > 0\)

$215. $ 已知\(\displaystyle f(x) = x^3 - x^2 + \frac{x}{2} + \frac{1}{4}\),且存在\(\displaystyle x_0 \in \left(0, \frac{1}{2} \right)\),使得\(f(x_0) = x_0\),设\(x_1 = 0, x_{n+1} = f(x_n), y_1 = \frac{1}{2}, y_{n+1} = f(y_n)\),其中\(n \in \mathbb{N^+}\),证明\(x_n < x_{n+1} < x_0 < y_{n+1} < y_n\)

$216. $ 实数\(a,b,c\)满足\(a + b+ c = 0, abc > 0\),证明\(\displaystyle \frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 0\)

$217. $ 若\(a,b\)均为不等于\(0\)的实数,给出下列两个条件,甲:存在区间\([-1, 2]\)的值\(x\),使得\(ax + b > 0\)成立;乙:\((b-a)b < 0\),则甲是乙的什么条件?(充分 必要 充要?)

$218. $ 设数列\(\{a_n\}\)满足\(\displaystyle a_1 = 2, a_{n+1} = a_n + \frac{1}{a_n} ( n = 1, 2, \cdots)\)
(1)求证:\(a_n > \sqrt {2n + 1}\)对一切正整数\(n\)成立;
(2)令\(\displaystyle b_n = \frac{a_n}{\sqrt n} (n = 1, 2, \cdots)\),试判断\(b_n\)\(b_{n+1}\)的大小。

$219. $ 已知二次函数\(f(x) = ax^2 + bx + 1 (a > 0)\)的最小值为\(-a\),且\(x_1, x_2\)\(f(x)\)的两个零点;
(1)求\(|x_1 - x_2|\)
(2)\(f(x) < 0\)的解集为\(A\),若\(f(x) + 2x\)\(A\)上不存在最小值,求\(a\)的取值范围;
(3)若\(-2 < x_1 < 0\),求\(b\)的取值范围。

$220. $ 已知函数\(\displaystyle f(x) = \frac{a^x}{1 + a^x} (a>0,a \ne 1)\)\([m]\)表示不超过实数\(m\)的最大值整数,则函数\(\displaystyle \left[ f(x) - \frac{1}{2} \right] + \left[ f(-x) - \frac{1}{2}\right]\)的值域是?

$221. $ 已知函数\(f(x) = 2mx^2 - 2(4 - m)x + 1, g(x) = mx\),若对任意实数\(x\)\(f(x)\)\(g(x)\)的值至少有一个正数,则\(m\)的取值范围是?

$222. $ 已知\(F_1, F_2\)是椭圆的两个焦点,满足\(\overrightarrow {MF_1} \cdot \overrightarrow{MF_2} = 0\)的点\(M\)总在椭圆内部,则椭圆的离心率的取值范围是?

$223. $ 若\(0 < a_1 < a_2, 0 < b_1 < b_2\),且\(a_1 + b_2 = a_2 + b_1 = 1\),则下列各代数式中最大的是?
(1)\(a_1b_1 + a_2b_2\) (2)\(a_1a_2 + b_1b_2\) (3)\(a_1b_2 + a_2b_1\) (4)\(\displaystyle \frac{1}{2}\)

$224. $ 已知抛物线\(C: y = x^2\)和三个点\(M(x_0, y_0), P(0, y_0), N(-x_0, y_0) (y_0 \ne x_0^2, y_0 > 0)\),过点\(M\)作一条直线交抛物线于\(A,B\)两点,\(AP,BP\)的延长线交曲线\(C\)\(E,F\)
(1)证明:\(E, F, N\)三点共线;
(2)如果\(A,B,M,N\)四点共线,问是否存在\(y_0\)使以线段\(AB\)为直径的圆与抛物线有异于\(A,B\)的交点?如果存在,求出\(y_0\)的取值范围,并求出该交点到直线\(AB\)的距离;若不存在,请说明理由。

$225. $ 设点\(P(x_0, y_0)\)在直线\(x=m(y \ne \pm m, 0 < m < 1)\)上过点\(P\)作双曲线\(x^2 - y^2 = 1\)的两条切线\(PA,PB\),切点为\(A,B\),定点\(\displaystyle M(\frac{1}{m}, 0)\)
(1)过点\(A\)作直线\(x=y\)的垂线,垂足为\(N\),试求\(\triangle AMN\)的重心\(G\)所在的曲线方程;
(2)证明\(A, M, B\)共线。

$226. $ 已知\(A,B,C\)三点共圆,设圆心为\(O\)\(OA,OB\)之间的夹角为\(\theta\),且\(\overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB} (\lambda \mu > 0)\)
(1)若\(\theta = 60^\circ\),求\(\lambda \mu\)的最大值;
(2)在\(\triangle OAB\)中,\(a,b\)分别为\(OA,OB\)边的长,且\(S_{\triangle OAB} = \sqrt 2\),求\(\displaystyle ab \sqrt {\frac{1 - \cos \theta}{\lambda \mu}}\)

$227. $ 已知各项为正数的数列\(\{a_n\}\)满足\(a_1 = 3\)\(\displaystyle \frac{2a_{n+1} - a_n}{2a_n - a_{n+1}} = a_n a_{n+1} (n \in \mathbb{N}^+)\)
(1)求数列\(\{a_n\}\)的通项公式;
(2)设\(\displaystyle S_n = a_1^2 + a_2^2 + \cdots + a_n^2, T_n = \frac{1}{a_1^2} + \frac{1}{a_2^2} + \cdots + \frac{1}{a_n^2}\),求\(S_n + T_n\),并确定最小正整数\(n\),使得\(S_n + T_n\)为整数。

$228. $ 在三角形\(ABC\)中,求\(\displaystyle \frac{aA + bB + cC}{a + b + c}\)的取值范围。

$229. $ 在三角形\(ABC\)中,若\(c^n = a^n + b^n\);若\(n>2\)且为整数,则三角形为什么三角形?(锐角,直角,钝角);若\(1 < n < 2\),则三角又是什么三角形?

$230. $ 在三角形\(ABC\)中,若\(\displaystyle \cos A + \cos B + \cos C = \frac{3}{2}\),则三角形为什么三角形?(锐角,直角,钝角)

$231. $ 已知函数\(\displaystyle y = \frac{1}{3}x^3 + x^2 - 8x\)的图像上\(C\)存在一点\(P\)满足过该点的直线\(l\)与曲线\(C\)交于不同于\(P\)的两点\(M(x_1, y_1), N(x_2, y_2)\),则恒有\(y_1 + y_2\)为定值\(y_0\),则\(y_0\)的值为?

$232. $ 已知函数\(\displaystyle f(x) = x - \frac{1}{2} x^2\),若常数\(\displaystyle k \ge \frac{2}{3}\),存在区间\([m, n] (m < n)\)使得\(f(x)\)在区间\([m, n]\)上的值域为\([km, kn]\),求出区间\([m,n]\)

$233. $ 若\((x + \sqrt {x^2 + 1}) (y + \sqrt {y^2 + 1})=1\),求\(x+y\)的值。

$234. $ 函数\(\displaystyle f(x) = \frac{\sin x - 1}{\sqrt (3 - 2 \cos x - 2 \sin x)} (0 \le x < 2\pi)\)的值域是?

$235. $ 若\(\alpha, \beta\)是两锐角,且\(\sin(\alpha + \beta) = 2 \sin \alpha\),则\(\alpha, \beta\)的大小关系是?

$236. $ 已知\(\displaystyle \alpha + \beta = \frac{3}{4}\pi\),求证\(\displaystyle \cos^2 \alpha + \cos^2 \beta + \sqrt 2 \cos \alpha \cos \beta = \frac{1}{2}\)

$237. $ 定义在\((-1, 1)\)上的函数\(f(x)\),对任意\(x,y \in (-1, 1)\)都有\(\displaystyle f(x) + f(y) = f\left(\frac{x+y}{1+xy} \right)\),当\(x \in (-1, 0)\)\(f(x)>0\),证明:
\[ f\left(\frac{1}{5}\right) + f\left(\frac{1}{11}\right) + \cdots + f\left(\frac{1}{n^2 + 3n + 1} \right) > f\left(\frac{1}{2}\right) \]

$238. $ 已知\(3 \sin^2 \alpha + 2 \sin^2 \beta = 2 \sin \alpha\),则\(\sin^2 \alpha + \sin^2 \beta\)的取值范围是?

$239. $ 已知函数\(f(x) = x^2 + bx + c(b, c \in \mathbb{R})\),对任意\(x \in \mathbb{R}\),恒有\(f^\prime(x) \le f(x)\)
(1)证明:当\(x \ge 0\)时,\(f(x) \le (x + c)^2\)
(2)若对满足题设条件的任意\(b,c\),不等式\(f(c) - f(b) \le M (c^2 - b^2)\)恒成立,求\(M\)的最小值。

$240. $ 已知\(f(x) = -x^2 + 8x, g(x) = 6 \ln x + m\),已知\(f(x)-g(x)=0\)有且仅有两个不同的解,求\(m\)的值。

$241. $ 若\(a \ne 0, \sin x + \sin y = a, \cos x + \cos y = a\),则$x + x = $?

$242. $ 已知直线\(\displaystyle x = \frac{\pi}{6}\)是函数\(y = a \sin x - b \cos x\)图像的一条对称轴,则函数\(y = b \sin x - a \cos x\)图像的一条对称轴方程为?

$243. $ 在三角形\(ABC\)中,\(\cos 2B > \cos 2A\)\(A > B\)的什么条件?(充分,必要,充要)

$244. $ 在\(\triangle ABC\)中,若\(\displaystyle C = \frac{\pi}{3}, a > 1, b - c = \frac{1}{2}\),求\(b\)的最小值。

$245. $ 在\(\triangle ABC\)中,\(\displaystyle \overrightarrow{OC} = \frac{1}{4} \overrightarrow{OA}, \overrightarrow{OD} = \frac{1}{2} \overrightarrow{OB}\)\(AD\)\(BC\)交于\(M\)点,过\(M\)作直线分别交\(OB,OA\)\(F,E\)两点,若\(\overrightarrow {OE} = p \overrightarrow{OA}, \overrightarrow{OF} = q \overrightarrow{OB}\),求证\(\displaystyle \frac{1}{p} + \frac{3}{q}\)为定值。

$246. $ 已知\(M\)是以点\(C\)为圆心的圆\((x+1)^2 + y^2 = 8\)上的动点,定点\(D(1,0)\),点\(P\)\(DM\)上,点\(N\)\(CM\)上,且满足\(\overrightarrow{DM} = 2 \overrightarrow{DP}, \overrightarrow{NP} \cdot \overrightarrow{DM} = 0\),设动点\(N\)的轨迹曲线为曲线\(E\)
(1)求曲线\(E\)的方程;
(2)线段\(AB\)是曲线\(E\)的长为\(2\)的动弦,\(O\)为坐标原点,求\(\triangle AOB\)面积\(S\)的取值范围。

$247. $ 已知数列\(\{a_n\}\)满足\(\displaystyle a_1 = 1, a_2 = \frac{1}{2}\),且\(\displaystyle a_{n+2} = \frac{a_{n+1}^2}{a_n + a_{n+1}} (n \in \mathbb{N}^+)\)
(1)求数列\(\{a_n\}\)的通项公式;
(2)求下表中前\(n\)行的所有数的和\(S_n\)

\[ \begin{matrix} \frac{a_1a_1}{a_2}\\ \frac{a_1a_2}{a_3} & \frac{a_2a_1}{a_3} \\ \frac{a_1a_3}{a_4} & \frac{a_2a_2}{a_4} & \frac{a_3a_1}{a_4} \\ \cdots \\ \frac{a_1a_n}{a_{n+1}} & \frac{a_2a_{n-1}}{a_{n+1}} & \cdots & \frac{a_na_1}{a_{n+1}} \end{matrix} \]

$248. $ 设\(x, y\)均为正数且\(4x + y = xy\),则\(x+y\)的最小值为?

$249. $ 若直线\(m\)被两条平行直线\(l_1: x - y + 1 = 0\)\(x - y + 3 = 0\)所得的线段长为\(2\sqrt 2\),则\(m\)的倾斜角为?

$250. $ 已知\(M(-3, 0), N(3, 0), B(1, 0)\),动圆\(C\)与直线\(MN\)切于点\(B\),过\(M,N\)与圆\(C相切的两直线相交于\)P\(点,则点\)P$的轨迹方程是?

$251. $ 已知圆\(C_1: (x+3)^2 + (y-1)^2 = 4\)和圆\(C_2: (x-4)^2 + (y - 5)^2 = 4\),存在过点\(P\)的无穷多对互相垂直的直线\(l_1,l_2\),它们分别于圆\(C_1\)和圆\(C_2\)相交,且直线\(l_1\)被圆\(C_1\)截得的线段长于直线\(l_2\)截得的线段相等,试求所有\(P\)点的坐标。

$252. $ 已知椭圆\(\displaystyle \frac{x^2}{4} + y^2 = 1\),设直线\(l\)与椭圆相交于不同的两点\(A,B\),已知点\(A\)的坐标为\((-a, 0)\),点\(Q(0, y_0)\)在线段\(AB\)的垂直平分线上且\(\overrightarrow{QA} \cdot \overrightarrow{QB} = 4\),求\(y_0\)的值。

$253. $ 已知抛物线\(C: y^2 = 4x\)的焦点为\(F\),过点\(K(-1, 0)\)的直线\(l\)\(C\)相交于\(A,B\)两点,点\(A\)关于\(x\)轴的对称点为\(D\)
(1)证明:点\(F\)在直线\(BD\)上;
(2)设\(\displaystyle \overrightarrow{FA} \cdot \overrightarrow{FB} = \frac{8}{9}\),求\(\triangle BDK\)的内切圆\(M\)的方程。

$254. $ 设\(O\)为坐标原点,\(F_1,F_2\)是双曲线\(\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a>0, b>0)\)的焦点,若在双曲线上存在点\(P\),满足\(\angle F_1PF_2 = 60^\circ, |OP|=\sqrt{7} a\),则该双曲线的渐进线方程为?

$256. $ 设\(P\)是双曲线\(\displaystyle x^2 - \frac{y^3}{3}=1\)的右支上的动点,\(F\)为双曲线的右焦点,已知\(A(3, 1)\),则\(|PA| + |PF|\)的最小值为?

$257. $ 已知椭圆\(\displaystyle \frac{x^2}{2} + y^2 = 1\),点\(P(x_0, 2-x_0) (x_0 \ne 2)\),点\(F_1,F_2\)分别是椭圆的左右焦点,若\(PF_1,PF_2\)与椭圆交于\(C,D\)\(A,B\)两点,直线\(OA,OB,OC,OD\)的斜率分别记为\(k_{OA},k_{OB},k_{OC},k_{OD}\),且满足\(k_{OA} + k_{OB} + k_{OC} + k_{OD} = 0\),求\(x_0\)的值。

$258. $ 若椭圆\(\displaystyle \frac{x^2}{2} + \frac{y^2}{3} = 1\)上存在两点\(A,B\)关于直线\(l: y = 4x + m\)对称,求\(m\)的取值范围。

$259. $ 到两条相互垂直的异面直线的距离相等的点在过其中一条直线且平行于另一条直线的平面内的轨迹是?

$260. $ 已知\(\displaystyle \vec a = \left(\cos \frac{\pi}{4}x, 1\right), \vec b = \left(-2 \sin \frac{\pi}{4}x, f(x)\right), \vec a \perp \vec b\),数列\(\{a_n\}\)满足\(\displaystyle a_1 = \frac{1}{2}, a_{n+1} = f(a_n), n \in \mathbb{N}^*\)
证明:(1)\(0 < a_n < a_{n+1} < 1\)
(2)\(\displaystyle a_{n+1} - \frac{\pi}{4}a_n > \frac{4-\pi}{4}\)

$261. $ 已知数列\(\{a_n\}\)中,\(\displaystyle a_1 = 1, a_{n+1} = c - \frac{1}{a_n}\)
(1)设\(\displaystyle c = \frac{5}{2}, b_n = \frac{1}{a_n - 2}\),求\(\{b_n\}\)的通项公式;
(2)求使不等式\(a_n < a_{n+1} < 3\)成立的\(c\)的取值范围。

$262. $ 设函数的定义域为\(\mathbb{R}\),对于任意的实数\(m,n\),恒有\(f(m + n) = f(m)f(n)\)且当\(x > 0\)时,\(0 < f(x) < 1\),设\(A = \{(x, y) \mid f(x^2)f(y^2) > f(1)\}, B = \{(x, y) \mid f(ax - y + 2) = 1, a \in \mathbb{R}\}\),若\(A \cap B = \varnothing\),求\(a\)的取值范围。

$263. $ 圆\(C\)的方程\((x-2)^2 + y^2 = 4\),圆\(M\)的方程\((x-2-5\cos \theta)^2 + (y - 5\sin\theta)^2 = 1 (\theta \in \mathbb{R})\),过圆\(M\)上任意一点\(P\)作圆\(C\)的两条切线\(PE,PF\),切点分别为\(E,F\),则\(\overrightarrow{PE} \cdot \overrightarrow{PF}\)的最小值为?

$264. $ 过抛物线\(y^2 = 2px (p>0)\)的焦点\(F\)作直线\(l\)交抛物线于\(A,B\)两点,且满足\(\overrightarrow{AF} = 2 \overrightarrow{FB}\),若\(S_{\triangle OAB} = \sqrt 3 |\overrightarrow{AB}|\)\(O\)为坐标原点),则\(p\)的值为?

$265. $ 等比数列\(\{a_n\}\)的首项\(\displaystyle a_1 = -\frac{1}{2}\),前\(n\)项和为\(S_n\),且\(S_1,S_2,S_3\)成等差数列,记\(\displaystyle b_n = \frac{2 + a_n}{1-a_n}\)
(1)记\(c_n = b_n - b_{2n-1}\),证明\(\displaystyle c_1 + c_2 + \cdots + c_n < \frac{11}{4}\)
(2)设\(b_n\)的前\(n\)项和为\(R_n\),是否存在正整数\(k\)使得\(R_k \ge 2k\)成立;若存在,求出\(k\)的值,若不存在,请说明理由。

$265. $ 已知椭圆\(\displaystyle x^2 + \frac{y^2}{2} = 1\),点\(\displaystyle S(-\frac{1}{3}, 0)\),过点\(S\)的直线\(l\)交椭圆于\(A,B\)两点,则以\(AB\)为直径的圆是否恒过一定点\(T\)

$267. $ 已知数列\(\{a_n\}\)的前\(n\)项和为\(S_n\)\(a_1 = 1, S_{n+1} = 2S_n + 3n + 1 (n \in \mathbb{N^+})\)
(1)求\(a_n\)
(2)对\(k \in \mathbb{N^+}\),设\(\displaystyle f(n) = \left\{\begin{aligned} &S_n - a_n + 3n & (n = 2k - 1)\\ &\log_2(a_n + 3) & (n = 2k)\end{aligned} \right.\),求使不等式\(f(m) > f(2m^2)\)恒成立的自然数\(m\)的最小值。

$268. $ 已知函数\(f(x) = a x^2 + ax\)\(g(x) = x -a\),其中\(a \in \mathbb{R}\)\(a \ne 0\),若\(p,q\)是方程\(f(x)=g(x)\)的两根且满足\(\displaystyle 0 < p < q < \frac{1}{a}\),证明:当\(x \in (0, p)\)时,\(g(x) < f(x) < p - a\)

$269. $ 设\(\triangle ABC\)的内角\(A,B,C\)所对边分别为\(a,b,c\)\(\displaystyle a \cos c + \frac{1}{2}c = b\),若\(a = 1\),则\(\triangle ABC\)的周长的取值范围是?

$270. $ 在\(\triangle ABC\)中,求证\(\cos 2A + \cos 2B + \cos 2C = -1 - 4 \cos A \cos B \cos C\)

$271. $ 已知\(f(x) = ax^2 + bx + c(a \ne 0)\),任给两个实数\(x_1,x_2\)有方程\(\displaystyle f(x) = \frac{1}{2}(f(x_1) + f(x_2))\)
(1)求证:方程\(\displaystyle f(x) = \frac{1}{2}(f(x_1) + f(x_2))\)有两个不相等的实根且有一个实根属于\((x_1,x_2)\)
(2)若上述方程的一个根为\(m\)\(x_1 < m < x_2\),且\(\displaystyle x_1, m - \frac{1}{2}, x_2\)成等差数列,求证\(x_0 < m^2\)\(x_0\)满足\(x=x_0\)\(f(x)\)的对称轴。

$272. $ 已知\(\displaystyle f(x) = \left| x - \frac{1}{x}\right|\),若\(f^2(x) + bf(x) + c = 0\)的方程有五个不同的实数解,则\(b, c\)的取值范围分别是?

$273. $ 已知\(\displaystyle a_1 = \frac{3}{2}, a_{n+1} = a_n^2 - a_n + 1 (n \in \mathbb{N^+})\),则\(\displaystyle \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_{2011}}\)的整数部分是?

$274. $ 设数列\(\{a_n\}\)是首项为\(0\)的递增数列,\(\displaystyle f_n(x) = \left| \sin \left(\frac{1}{n} (x - a_n)\right)\right|, (x \in [a_n, a_{n+1}])\)满足对任意的\(b \in [0, 1), f_n(x) = b\)总有两个不同的根,求\(S_n = a_1 - a_2 + a_3 - a_4 + \cdots + (-1)^{n-1}a_n\)

$275. $ 设变量\(x,y\)满足\(|x-2|+|y-2| \le 1\),则\(\displaystyle \frac{y-x}{x+1}\)的最大值为?

$276. $ 已知\(f(x)\)是定义在\((0, +\infty)\)上的单调函数,且对任意的\(x \in (0, +\infty)\)都有\(f(f(x) - \log_2^x) = 3\),则方程\(f(x) - f^\prime(x) = 2\)的解所在区间是?

$277. $ 已知点\(G\)\(\triangle ABC\)的外心,\(\overrightarrow{GA}, \overrightarrow{GB}, \overrightarrow{GC}\)是三个单位向量,且满足\(2\overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{AC} = 0, |\overrightarrow{GA}| = |\overrightarrow{AB}|\),如图所示\(\triangle ABC\)的顶点\(B,C\)分别在\(x\)轴和\(y\)轴的非负半轴上移动,\(O\)是坐标原点,则\(|\overrightarrow{OA}|\)的最大值为?

$278. $ 设\(a_1,a_2,\cdots,a_n\)是正整数\(1,2,3,\cdots,n\)的一个排列,令\(b_j\)表示排列在\(j\)的左边且比\(j\)大的数的个数,\(b_j\)称为\(j\)的逆序数,如在排列\(3,5,1,4,2,6\)中,\(5\)的逆序数是\(0\)\(2\)的逆序数是\(3\),则由\(1\)\(9\)\(9\)个数字构成的所有排列中满足\(1\)的逆序数是\(2\)\(2\)的逆序数是\(3\)\(5\)的逆序数是\(3\)的所有不同排列的种数是?

$279. $ 若点\(P(m+1,n+1)\)在不等式\(\left\{ \begin{aligned} & x+ y \ge 3 \\ & x - y \ge 1 \\ & 2x - y \le 6\end{aligned}\right.\)表示的可行域内,则\(\displaystyle \frac{2m+n+1}{m+2n+2}\)的取值范围是?

$280. $ 若\(g(x) = \lambda x + \sin x\)是区间\([-1,1]\)上的减函数,且\(g(x) < t^2 + \lambda t + 1\)\(x \in [-1, 1]\)恒成立,则\(t\)的取值范围是?

$281. $ 已知椭圆\(x^2 + 4y^2 = 8\)上一点\(M(2,1)\)平行于\(OM\)的直线\(l\)\(y\)轴上的截距为\(m (m<0)\),设直线\(l\)交椭圆于两个不同点\(A,B\),证明\(\triangle ABM\)的内心一定在直线\(l\)上。

$282. $ 已知\(a_{x+y} = a_x a_y\)\(a_1 \ne 0, x,y \in \mathbb{R}, S_n = \sum \limits_{i=1}^n a_i\),且\(\displaystyle b_n = \frac{2S_n}{a_n}+1\)为等比数列,设\(\displaystyle c_n = \frac{1}{1+2a_n}\),证明:
(1)对任意\(x>0\)\(\displaystyle c_n \ge \frac{1}{1+x} - \frac{1}{1+x^2}(2a_n - x) (n \in \mathbb{N^+})\)
(2)\(\displaystyle c_1 + c_2 + \cdots + c_n > \frac{n^2}{n+1} (n \in \mathbb{N}^+)\)

$283. $ 圆心\(P(x_0,y_0)\)在椭圆\(\displaystyle \frac{x^2}{25} + \frac{y^2}{16} = 1\)上,半径\(\displaystyle r = \frac{3}{5}x_0 + 3\)的所有圆覆盖的图形面积为?

$284. $ 证明:\(\displaystyle 1 + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 2^2} + \cdots + \frac{1}{n \cdot 2^{n-1}} < \frac{2}{3}\)

$285. $ 已知点\(A,B\)分别在\(x,y\)轴上运动,且\(|AB| = 8\),动点\(P\)满足\(\displaystyle \overrightarrow{AP} = \frac{3}{5}\overrightarrow{PB}\),设点\(P\)的轨迹为曲线\(C\),定点\(M(4,0)\),直线\(PM\)交曲线\(C\)与点\(Q\)(非\(P\)点);
(1)求曲线\(C\)的方程;
(2)求\(\triangle OPQ\)面积最大值并求此时直线\(PM\)的方程。

$286. $ 设\(D\)是边长为\(3\)的正\(\triangle P_1P_2P_3\)及其内部的点构成的集合;点\(P_0\)\(\triangle P_1P_2P_3\)的中心,则集合\(S = \{ P \mid P \in D, |PP_0| \le |PP_i|, i=1,2,3 \}\)所表示的平面区域的面积是?

$287. $ \(y = \ln x\)上是否存在不同的两点\(A,B\),线段\(AB\)的中点的横坐标为\(x_0\),使得函数\(y = \ln x\)\(M(x_0, \ln x_0)\)处的切线\(l \parallel AB\)?若存在,求切线\(l\)的方程,若不存在,请说明理由。

$288. $ 设实数\(x, y\)满足$ { \[\begin{aligned}|x| \le 1 \\ |y| \le 1\end{aligned}\]

. \(,则\)z = $的取值范围是?

$289. $ 已知\(A,B,P\)是双曲线\(\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > b > 0)\)上不同的三点,且\(AB\)连线过坐标原点\(O\),若直线\(PA,PB\)的斜率之积\(\displaystyle k_{PA} \cdot k_{PB} = \frac{2}{3}\),则双曲线的离心率为?

$290. $ 将一个三位数的三个数字顺序颠倒,将所得的数与原数相加,若和的所有位数中没有一个偶数,则称这个数为“奇和数”,那么所有3位数中“奇和数”的个数为?

$291. $ 定义在\([1, +\infty)\)上的函数\(\displaystyle f(x) = \left\{ \begin{aligned} & 4 - 8 |x - \frac{3}{2}| & (1 \le x \le 2) \\ & \frac{1}{2}f(\frac{x}{2}) & (x> 2) \end{aligned}\right.\),则以下成立的有:
(1)函数\(f(x)\)的值域为\([0, 4]\)
(2)关于\(x\)的方程\(\displaystyle f(x) = (\frac{1}{2})^n (n \in \mathbb{N^+})\)\(2n+4\)个不相等的实根;
(3)当\(x \in [2^{n-1}, 2^n] (n \in \mathbb{N^+})\)时,函数\(f(x)\)的图像与\(x\)轴围成的图形面积\(S = 2\)
(4)存在\(x_0 \in [1, 8]\),使得不等式\(x_0 f(x_0) > 6\)成立。

$292. $ \(\displaystyle f(x) = \frac{1}{2}x, g(x) = e \ln x\),是否存在直线\(y = kx + m\)使得\(f(x) \ge kx + m\)\(g(x) \le kx + m\)都成立?

$293. $ 如图,\(A,B,C\)是圆\(O\)上三点,射线\(CO\)与线段\(AB\)的延长线交于点\(D\),若\(\overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}\),则\(\alpha + \beta\)的取值范围是?

$294. $ 等差数列\(a_n\)的前\(n\)项和为\(S_n\),若\(\displaystyle \left\{ \frac{S_n}{a_n} \right\}\)是公差为\(d\)的等差数列,则\(d=\)

$295. $ \(a,b,c\)分别是直角三角形\(ABC\)的三边,其中\(c\)为斜边,若不等式\(a^2(b+c) + b^2(a+c) + c^2(a+b) \ge kabc\)对任意的\(a,b,c\)都成立,求\(k\)的取值范围。

$296. $ 已知\(a_{n+1} = a_n^2 - 2n a_n + 1 (n \in \mathbb{N^+})\)
(1)证明:\(a_n \ge 2n + 2, n \in \mathbb{N^+}\)
(2)求证\(\displaystyle \frac{1}{1+a_1} + \frac{1}{1+a_2} + \cdots + \frac{1}{1+a_n} < \frac{2}{5}\)

$297. $ 如图,设\(P\)为直线\(y = x - 2\)上的动点,过点\(P\)作抛物线\(\displaystyle y = \frac{1}{2}x^2\)的两条切线,切点分别为\(A,B\)
(1)求证直线\(AB\)过定点;
(2)求\(\triangle PAB\)的面积\(S\)的最小值。

$298. $ 若偶函数\(f(x)\)在区间\([-1,0]\)上是增函数,\(\alpha, \beta\)是锐角三角形的两个内角,则下面成立的有:
(1)\(f(\cos \alpha) > f(\cos \beta)\)
(2)\(f(\sin \alpha) > f(\cos \beta)\)
(3)\(f(\sin \alpha) > f(\sin \beta)\)
(4)\(f(\cos \alpha) > f(\sin \beta)\)

$299. $ 设集合\(A = [0, \frac{1}{2}], B = [\frac{1}{2}, 1]\),函数\(f(x) = \left\{ \begin{aligned} & x+ \frac{1}{2} & x \in A \\ & 2(1-x) & x \in B\end{aligned} \right.\),若\(x_0 \in [0, 1]\)\(f(x_0) \in A\),则\(x_0\)的取值范围是?

$300. $ 已知两点\(A(-1,-2), B(1, -1)\),给出下列曲线方程:(1)\(4x + 2y - 1 = 0\);(2)\(x^2 + y^2 = 4\);(3)\(\displaystyle x^2 + \frac{y^2}{2} = 1\);(4)\(\displaystyle x^2 - \frac{y^2}{2} = 1\),则在曲线上存在点\(P\)满足\(\overrightarrow{AP} \cdot \overrightarrow{AB} = 0\)的所有曲线方程为?