0%

微积分在几何上的应用一:弧长,旋转曲面的面积与体积

定理1

\(\mathbb{R}^2\)上的曲线\(\Gamma\)由极坐标方程
\[ r = r(\theta) \quad (\boldsymbol{\alpha} \le \theta \le \boldsymbol{\beta}) \]
表示,从而由此曲线和射线
\[ \theta = \alpha, \quad \theta = \beta \]
围城的区域的面积\(S\)
\[ S = \frac{1}{2} \int_{\alpha}^{\beta} r^2 (\theta) \mathrm{d}(\theta) \]

证:对\(\theta\)的变化范围\([\alpha, \beta]\)作一分割
\[ \alpha = \theta_1 < \theta_2 < \cdots < \theta_n = \beta \]
任取\(\xi_i \in [\theta_{i-1}, \theta_{i}] (i=1,2,\cdots,n)\),从而夹在\(\theta = \theta_{i-1}, \theta = \theta_i\)\(r = r(\theta)\)之间的区域的面积,在\(\Delta \theta_i = \theta_{i} - \theta_{i-1}\)很小时可表示为
\[ \Delta S_i \approx \frac{1}{2} r^2(\theta_{i}) \Delta \theta_i \]
\(\max \limits_{1 \le i \le n} \Delta \theta_i \to 0\),得到
\[ S = \frac{1}{2} \int_{\alpha}^{\beta} r^2 (\theta) \mathrm{d}(\theta) \]

Q.E.D.

引理1

\(x(t), y(t), z(t)\)\([\alpha, \beta]\)上有连续的导函数,取\(t\)的一个分割
\[ \pi: \alpha = t_0 < t_1 < \cdots < t_n = \beta \]
那么有
\[ \lim \limits_{\Vert \pi \Vert \to 0} \sum_{i=1}^n \sqrt{(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2 + (z^\prime(\zeta_i))^2} \Delta t_i= \int_{\alpha}^{\beta} \sqrt{(x^\prime(t))^2 + (y^\prime(t))^2 + (z^\prime(t))^2} \mathrm{d}t \]
其中\(\xi_i, \eta_i, \zeta_i\)分别为\(x, y, z\)函数的值点,即\(\xi_i,\eta_i,\zeta_i \in [t_{i-1}, t_i]\)

证: 由三角不等式
\[ | \Vert \boldsymbol{a} \Vert - \Vert \boldsymbol{b} \Vert| \le \Vert \boldsymbol{a} - \boldsymbol{b} \Vert \]

\[ \begin{aligned} & \left| \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\xi_i))^2 + (z^\prime(\xi_i))^2} - \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2 + (z^\prime(\zeta_i))^2} \right| \\ & \le \sqrt {(y^\prime(\xi_i) - y^\prime(\eta_i))^2 + (z^\prime(\xi_i) - z^\prime(\zeta_i))^2} \\ & \le |y^\prime(\xi_i) - y^\prime(\eta_i)| + |z^\prime(\xi_i) - z^\prime(\zeta_i)| \end{aligned} \]
由于\(y^\prime(t)\)\(z^\prime(t)\)\([\alpha, \beta]\)上连续,从而一致连续,因此对任意的\(\varepsilon > 0\),存在\(\delta_1 > 0\),当\(\Vert \pi \Vert < \delta_1\)时,
\[ \left\{ \begin{aligned} |y^\prime(\xi_i) - y^\prime(\eta_i)| < \frac{\varepsilon}{4(\beta - \alpha)} \\ |z^\prime(\xi_i) - z^\prime(\zeta_i)| < \frac{\varepsilon}{4(\beta - \alpha)} \\ \end{aligned} \right. \]
\(i=1,2,\cdots,n\)都成立,令
\[ \begin{aligned} I = \int_{\alpha}^{\beta} \sqrt{(x^\prime(t))^2 + (y^\prime(t))^2 + (z^\prime(t))^2} \mathrm{d}t \\ S = \sum_{i=1}^n \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\xi_i))^2 + (z^\prime(\xi_i))^2} \Delta t_i \end{aligned} \]
由积分的定义可知,对上述\(\varepsilon\),存在\(\delta_2 > 0\),当\(\Vert \pi \Vert \le \delta_2\)时,有
\[ |S - I| < \frac{\varepsilon}{2} \]
而不论\(\xi_i \in [t_{i-1}, t_i] (i=1,2,\cdots,n)\)如何选取,当\(\Vert \pi \Vert < \min(\delta_1, \delta_2)\)时,有
\[ \begin{aligned} & |\sum_{i=1}^n \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2 + (z^\prime(\zeta_i))^2} \Delta t_i- I| \\ & \le |\sum_{i=1}^n \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2 + (z^\prime(\zeta_i))^2} \Delta t_i - S| + |S - I| \\ & < \sum_{i=1}^n (|y^\prime(\xi_i) - y^\prime(\eta_i)| + |z^\prime(\xi_i) - z^\prime(\zeta_i)|) \Delta t_i + \frac{\varepsilon}{2} \\ & < \left( \frac{\varepsilon}{4(\beta - \alpha)} + \frac{\varepsilon}{4(\beta - \alpha)} \right) \sum_{i=1}^n \Delta t_i + \frac{\varepsilon}{2} \\ & = \varepsilon \end{aligned} \]

Q.E.D.

定理2

\(\mathbb{R}^3\)的曲线\(\Gamma\)的参数方程为
\[ \left\{ \begin{aligned} x = x(t), \\ y = y(t), \\ z = z(t), \end{aligned} \right. \quad (\alpha \le t \le \beta) \]
或用向量形式表示为
\[ \boldsymbol{r} = \boldsymbol{r}(t) \quad (\alpha \le t \le \beta) \]
其中\(x(t), y(t), z(t)\)\([\alpha, \beta]\)上有连续的导数,点\(A = \boldsymbol{r}(\alpha)\)\(B = \boldsymbol{r}(\beta)\)分别是\(\Gamma\)的起点与终点。则该曲线的弧长公式为
\[ s(\Gamma) = \int_{\alpha}^{\beta} \sqrt{(x^\prime(t))^2 + (y^\prime(t))^2 + (z^\prime(t))^2} \mathrm{d}t \]

证:沿\(A\)\(B\)的方向在\(\Gamma\)上取\(n+1\)个点:
\[ A = A_0, A_1, A_2, \cdots, A_n = B \]
并把这\(n\)条线段之和\(\sum_{i=1}^n |A_{i-1}A_i|\)作为\(\Gamma\)弧长的一个近似值,可知当分割点越来越细时,近似值的极限就是弧长。设点\(A_i\)对应着参数值\(t_i (i=0,1,2,\cdots,n)\),则
\[ \alpha = t_0 < t_1 < t_2 < \cdots < t_n = \beta \]
记为分割\(\pi\),从而
\[ \begin{aligned} |A_{i-1}A_i| &= \Vert \boldsymbol{r}(t_i) - \boldsymbol{r}(t_{i-1}) \Vert \\ &= \sqrt {((x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2 + (z(t_i) - z(t_{i-1}))^2)} \\ &= \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2 + (z^\prime(\zeta_i))^2} \Delta t_i \end{aligned} \]
其中\(\xi_i,\eta_i, \zeta_i \in (t_{i-1}, t_i)\),又由于\(x^\prime, y^\prime, z^\prime\)都是连续函数,所以存在一个常数\(K\),使得
\[ |A_{i-1}A_i| \le K \Delta t_i \le K \Vert \pi \Vert \]
所以
\[ \max \limits_{1 \le i \le n} | A_{i-1}A_i | \le K \Vert \pi \Vert \]
这表明,将分割\(\pi\)无限加细,对应的曲线\(\Gamma\)上的分割也会无限加细,从而\(\Gamma\)的弧长为
\[ \lim \limits_{\Vert \pi \Vert \to 0} \sum_{i=1}^n \sqrt{(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2 + (z^\prime(\zeta_i))^2} \Delta t_i \]
再由引理1可知,弧长
\[ S(\Gamma) = \int_{\alpha}^{\beta} \sqrt {(x^\prime(t))^2 + (y^\prime(t))^2 + (z^\prime(t))^2} \mathrm{d} t \]

Q.E.D.

定理3

(1)设\(y = f(x) \ge 0\)是区间\([a,b]\)上的一条连续曲线,让这条曲线绕\(x\)轴旋转一周,得到的旋转体的体积公式为
\[ V = \pi \int_a^b f^2(x) \mathrm{d} x \]
(2)设曲线\(\Gamma\)
\[ x= x(t), y = y(t) \quad (\alpha \le t \le \beta) \]
是一条在上半平面不自交的\(C^1\)类曲线,让这条曲线绕\(Ox\)轴旋转一周,生成的旋转曲面的面积为
\[ S = 2\pi \int_{\alpha}^{\beta} y(t) \sqrt {(x^\prime(t))^2 + (y^\prime(t))^2} \mathrm{d} t \] b

证:(1)作区间\([a,b]\)的一个分割
\[ \pi: a = x_0 < x_1 < \cdots < x_n = b \]
将旋转体介于平面\(x = x_{k-1}, x= x_{k}\)之间的体积记为\(V_k\),任取\(\xi_k \in [x_{k-1}, x_k]\),则
\[ V_k \approx \pi f^2(\xi_k) \Delta x_k \]
从而
\[ V = \lim \limits_{\Vert \pi \Vert \to 0} \sum_{k=1}^n \pi f^2(\xi_k) \Delta x_k = \pi \int_a^b f^2(x) \mathrm{d} x \]
(2)在\(\Gamma\)上取\(n+1\)个点
\[ A_0,A_1,\cdots,A_n \]
从而对应的参数区间\([\alpha, \beta]\)也有分点
\[ \alpha = t_0 < t_1 < \cdots < t_n = \beta \]
这时曲线上的第\(i\)\(A_{i-1}A_i\)的弧长可近似为
\[ \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2} \Delta t_i \]
其中\(\xi_i, \eta_i \in [t_{i-1}, t_i]\),由这段曲线弧旋转而成的曲面面积可表示为
\[ \Delta S_i \approx 2 \pi y(\zeta_i) \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2} \Delta t_i \]
其中\(\zeta_i \in [t_{i-1}, t_i]\),所以旋转曲面的总面积可表示为
\[ S \approx \sum_{i=1}^n 2\pi y(\zeta_i) \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2} \Delta t_i \]
\(\Vert \pi \Vert \to 0\)时,利用类似引理1的证法,可得
\[ S = \lim \limits_{\Vert \pi \Vert \to 0} \sum_{i=1}^n 2\pi y(\zeta_i) \sqrt {(x^\prime(\xi_i))^2 + (y^\prime(\eta_i))^2} \Delta t_i = 2\pi \int_{\alpha}^{\beta} y(t) \sqrt {(x^\prime(t))^2 + (y^\prime(t))^2} \mathrm{d} t \]

Q.E.D.