定义1
定义\(f: I \to \mathbb{R}\),其中\(I\)是\(\mathbb{R}^n\)中的一个闭长方体,即\(I = I_1 \times I_2 \times \cdots I_n\),其中\(i_i=[a_i, b_i] (i=1,2,\cdots,n)\)是\(\mathbb{R}\)中的有界闭区间。\(I\)的\(n\)维体积定义为
\[ \mu(I) = \prod_{i=1}^n (b_i - a_i) \]
用平行于各个坐标平面的\(n\)组超平面对\(I\)进行划分,得到有限多个小的子长方体,不妨设为\(k\)个,这称为\(I\)的一个分割\(\pi\),这时可以定义Riemann和
\[ \sum_{i=1}^k f(\boldsymbol{\xi_i}) \mu(I_i) \]
其中\(\boldsymbol{\xi_i} \in I_i\),\(\mu(I_i)\)表示子长方体\(I_i\)的体积。
有了定义1,仿照二重积分,三重积分的推理方法,可以定义和证明相似的定理。比如可以记\(\Vert \pi
\Vert\)为这些子长方体的对角线的长度的最大值,若\(\Vert \pi \Vert \to
0\)时,上式的Riemann和极限存在且不依赖于子长方体中值点的选取,则称该极限为\(f\)在\(I\)上的积分,记作
\[
\idotsint \limits_I f(x_1, x_2, \cdots, x_n) \mathrm{d} x_1
\mathrm{d} x_2 \cdots \mathrm{d} x_n
\]
也记为
\[
\int_I f \mathrm{d} \mu
\]
这时称\(f\)在\(I\)上可积,而且若\(f\)在\(I\)可积,那么\(f\)在\(I\)上必有界。包括上和,下和以及可积性的充分必要条件都与前面二重积分的结论一样,以及\(I\)上的\(n\)重积分计算,也可以化为累次积分来进行,这时共有\(n!\)中不同的顺序。关于\(n\)重积分的Lebesgue定理,也可以引入零测集与零体积集的概念,可以证明:一个有界点集有体积的充分必要条件是它的边界是零体积集。同理,\(n\)重积分也可以化为一个\(n-1\)重积分和一个定积分来计算。
定理1
设\(V \subset \mathbb{R}^n\)是有体积的有界闭集,有界函数\(f: V \to \mathbb{R}\)连续,
(1)如果
\(V = \{ \boldsymbol{x} = (x_1, x_2,\cdots,x_n) \in \mathbb{R}^n \}\),当\((x_1, x_2, \cdots, x_{n-1}) \in D \subset \mathbb{R}^{n-1}\)时,
\[ \varphi_1(x_1, x_2, \cdots, x_{n-1}) \le x_n \le \varphi_2(x_1, x_2, \cdots,x_{n-1}) \]
其中\(\varphi_1, \varphi_2\)是\(D\)上的连续函数,那么
\[ \int_V f \mathrm{d} \mu = \idotsint \limits_D \mathrm{d} x_1 \mathrm{d} x_2 \mathrm{d} x_{n-1} \int_{\varphi_1(x_1, x_2, \cdots, x_{n-1})}^{\varphi_2(x_1, x_2, \cdots, x_{n-1})} f(x_1, x_2,\cdots,x_{n-1}, x_n) \mathrm{d} x_n \]
(2)如果
\(V = \{ \boldsymbol{x} = (x_1, x_2, \cdots, x_{n}) \in \mathbb{R}^n\}\),当\(x_n \in [a, b]\)时,
\[ (x_1,x_2,\cdots, x_{n-1}) \in D_{x_n} \in \mathbb{R}^{n-1} \]
那么
\[ \int_V f \mathrm{d} \mu = \int_a^b \mathrm{d} x_n \idotsint \limits_{D_{x_n}} f(x_1, x_2,\cdots,x_n) \mathrm{d} x_1 \mathrm{d} x_2 \cdots \mathrm{d} x_{n-1} \]
(3)当然,也可把\(n\)重积分化成一个\(k (1 \le k < n)\)重积分与一个\(n-k\)重积分来计算,即当\((x_{k+1}, \cdots, x_n) \in D_1 \subset \mathbb{R}^{n-k}\)时,
\[ (x_1, x_2, \cdots, x_{k}) \in D_2 \subset \mathbb{R}^{k} \]
那么
\[ \int_V f \mathrm{d} \mu = \overbrace{\idotsint \limits_{D_1}}^{n-k \text{个}} \mathrm{d} x_{k+1} \cdots \mathrm{d} x_n \overbrace{\idotsint \limits_{D_2}}^{k \text{个}} f(x_1, x_2,\cdots,x_n) \mathrm{d} x_{1} \cdots \mathrm{d} x_k \]
定理2
设\(\Omega\)是\(\mathbb{R}^n\)中的开集,\(\Delta \subset \Omega\)有体积,映射\(\boldsymbol{\varphi}: x_i = x_i(u_1,u_2,\cdots,u_n) (i=1,2,\cdots,n)\)在\(\Delta\)上是正则的,那么对\(\boldsymbol{\varphi} (\Delta)\)上的连续函数\(\boldsymbol{F}\),有
\[ \idotsint \limits_{\boldsymbol{\varphi}(\Delta)} \boldsymbol{F}(x_1, x_2, \cdots,x_n) \mathrm{d} x_1 \mathrm{d} x_2 \cdots \mathrm{d} x_n = \idotsint \limits_{\Delta} \boldsymbol{F}(x_1(u_1,\cdots,u_n), \cdots, x_n(u_1,\cdots,u_n)) \left| \frac{\partial (x_1, \cdots,x_n)}{\partial (u_1, \cdots, u_n)} \right| \mathrm{d} u_1 \cdots \mathrm{d} u_n \]
定理3
令映射
\[ \left\{ \begin{matrix} x_1 = & r \cos \theta_1, \\ x_2 = & r \sin \theta_1 \cos \theta_2, \\ x_3 = & r \sin \theta_1 \sin \theta_2 \cos \theta_2, \\ \cdots\\ x_{n-1} = & r \sin \theta_1 \sin \theta_2 \cdots r \sin \theta_{n-2} \cos \theta_{n-1} \\ x_n = & r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \sin \theta_{n-1} \end{matrix} \right. \]
称为\(n\)维球坐标变换,改变换将有界集\(\Delta\)映射到\(V\),则
\[ \int_V F(x_1,\cdots, x_n) \mathrm{d} \mu = \idotsint \limits_{\Delta} \boldsymbol{F}(\theta_1, \cdots, \theta_n) r^{n-1} \sin^{n-2} \theta_1 \sin ^{n-3} \theta_2 \cdots \sin \theta_{n-2} \mathrm{d} \theta_1 \cdots \mathrm{d} \theta_n \]
证:关键需要证明
\[
\frac{\partial (x_1, x_2, \cdots, x_n)}{\partial (r, \theta_1,
\cdots, \theta_{n-1})} = r^{n-1} \sin^{n-2} \theta_1 \sin ^{n-3}
\theta_2 \cdots \sin \theta_{n-2}
\]
这时考虑方程组
\[
\left\{
\begin{matrix}
F_1 = & r^2 - (x_1^2 + x_2^2 + \cdots + x_n^2) = 0 \\
F_2 = & r^2 \sin^2 \theta_1 - (x_2^2 + \cdots + x_n^2) = 0
\\
F_3 = & r^2 \sin^2 \theta_1 \sin^2 \theta_2 - (x_3^2 +
\cdots + x_n^2) = 0 \\
\cdots \\
F_n = & r^2 \sin^2 \theta_1 \cdots \sin^ \theta_{n-1} -
x_n^2 = 0
\end{matrix}
\right. \tag {1}
\]
令\(\boldsymbol{u} = (r, \theta_1, \cdots,
\theta_{n-1}), \boldsymbol{x} = (x_1, x_2, \cdots,
x_n)\),则根据隐映射定理可知
\[
\left(\begin{matrix}
\frac{\partial r}{\partial \theta_1} & \cdots &
\frac{\partial x_1}{\partial \theta_{n-1}} \\
\vdots & & \vdots \\
\frac{x_n}{\partial r} & \cdots & \frac{x_n}{\partial
\theta_{n-1}}
\end{matrix} \right) = - (J_{\boldsymbol{x}}F(\boldsymbol{x},
\boldsymbol{u}))^{-1} J_{\boldsymbol{u}}F(\boldsymbol{x},
\boldsymbol{u})
\]
两边取行列式即得
\[
\frac{\partial (x_1, x_2, \cdots, x_n)}{\partial (r, \theta_1,
\cdots, \theta_{n-1})} = (-1)^n \frac{\det
J_{\boldsymbol{u}}F(\boldsymbol{x}, \boldsymbol{u})}{\det
J_{x}F(\boldsymbol{x}, \boldsymbol{u})}
\]
通过方程组(1)可以求出
\[
\begin{aligned}
&\det J_{\boldsymbol{u}}F(\boldsymbol{x}, \boldsymbol{u}) = 2^n
r^{2n-1} \sin^{2n-3} \theta_1 \cos \theta_1 \sin^{2n-5} \theta_2 \cos
\theta_2 \cdots \sin \theta_{n-1} \cos \theta_{n-1} \\
&\det J_{\boldsymbol{x}} F(\boldsymbol{x}, \boldsymbol{u}) =
(-1)^n 2^n r^n \sin^{n-1} \theta_1 \cos \theta_1 \sin^{n-2} \theta_2
\cos \theta_2 \cdots \sin \theta_{n-1} \cos \theta_{n-1}
\end{aligned}
\]
所以
\[
\frac{\partial (x_1, x_2, \cdots, x_n)}{\partial (r, \theta_1, \cdots,
\theta_{n-1})} = r^{n-1} \sin^{n-2} \theta_1 \sin ^{n-3} \theta_2 \cdots
\sin \theta_{n-2}
\]
Q.E.D.