定义1
定义\(f: I \to \mathbb{R}\), 其中\(I\)是\(\mathbb{R}^2\)中的闭矩形,\(I = [a,b] \times [c, d]\),作\([a,b]\)的分割
\[ \pi_x : a = x_0 < x_1 < \cdots < x_n = b; \]
又作\([c,d]\)的分割
\[ \pi_y : c = y_0 < y_1 < \cdots < y_n = d; \]
两族平行直线\(x = x_i(i=0,1,\cdots,n)\)与\(y=y_j(j=0,1,\cdots,m)\)把\(I\)分割成\(k= n \times m\)个子矩形:
\[ [x_{i-1}, x_i] \times [y_{j-1}, y_j] \quad (i=1,2,\cdots,n; j=1,2,\cdots,m) \]
这\(k\)个子矩形的全体组成\(I\)的一个分割\(\pi = \pi_x \times \pi_y\),用一定次序重排这\(k\)个子矩形,将它们编号为\(I_1,I_2,\cdots, I_k\),在每一个\(I_i\)中任取一点\(\xi_i (i=1,2,\cdots,k)\),作积分和
\[ \sum_{i=1}^k f(\xi_i) \sigma(I_i) \tag{1} \]
其中\(\sigma(I_i)\)表示\(I_i\)区域的面积。记
\[ \Vert \pi \Vert = \max(\mathrm{diam}(I_1), \mathrm{diam}(I_2), \cdots, \mathrm{diam}(I_k)) \]
这里\(\mathrm{diam}(I_i)\)表示矩形\(I_i\)的对角线的长度,称\(\Vert \pi \Vert\)为分割\(\pi\)的宽度。令\(\boldsymbol{\xi} = (\boldsymbol{\xi_1}, \boldsymbol{\xi_2}, \cdots, \boldsymbol{\xi_k})\),称\(\boldsymbol{\xi}\)为积分和\((1)\)的值点向量,称\(\boldsymbol{\xi_1}, \boldsymbol{\xi_2},\cdots, \boldsymbol{\xi_k}\)为值点。
定义2
如果存在数\(A\),使得对任意的给定的\(\varepsilon > 0\),存在\(\delta > 0\),当\(\Vert \pi \Vert < \delta\)时,不论值点\(\xi_i\)在子矩形\(I_i\)中如何选择,都有
\[ \left| \sum_{i=1}^k f(\boldsymbol{\xi_i}) \sigma(I_i) - A \right| < \varepsilon \]
则称函数\(f\)在矩形\(I\)上可积,并将\(A\)写作
\[ \iint \limits_I f(x,y) \mathrm{d}x \mathrm{d}y \quad 或 \quad \int_I f \mathrm{d} \sigma \]
称之为\(f\)在矩形\(I\)上的二重积分,也可简称为\(f\)在\(I\)上的积分,这里\(f\)称为被积函数,\(I\)称为积分区域。上述定义用极限过程记为
\[ \lim \limits_{\Vert \pi \Vert \to 0} \sum_{i=1}^k f(\boldsymbol{\xi_i}) \sigma(I_i) = A \]
定理1
如果\(f\)在\(I\)上可积,那么\(f\)必在\(I\)上有界。
证:与函数积分三的定理1证明方法一样。
Q.E.D.
定理2
设\(f\)和\(g\)在\(I\)上可积,那么
(1)若\(c\)为任何常数,那么\(cf\)在\(I\)上也可积,并且
\[ \int_I (cf) \mathrm{d} \sigma = c \int_I f \mathrm{d} \sigma \]
(2)\(f \pm g\)在\(I\)上可积,并且
\[ \int_I (f \pm g) \mathrm{d} \sigma = \int_I f \mathrm{d} \sigma \pm \int_I g \mathrm{d} \sigma \]
(3)若\(f \ge 0\),则
\[ \int_I f \mathrm{d} \sigma \ge 0 \]
(4)若\(f \ge g\),则
\[ \int_I f \mathrm{d} \sigma \ge \int_I g \mathrm{d} \sigma \]
证:由积分的定义易推出(1)(2)(3);由(2)(3)易推出(4)。
Q.E.D.
定义3
设\(f\)定义在\(I\)上,有分割
\[ \pi: I_1, I_2, \cdots, I_k \]
则
\[ S(f, \pi) = \sum_{i=1}^k f(\boldsymbol{\xi_i}) \sigma(I_i) \]
称为\(f\)关于分割\(\pi\)的Riemann和。令
\[ m_i = \inf f(I_i), \quad M_i = \sup f(I_i) \quad (i=1,2,\cdots,k) \]
定义
\[ \underline S(f, \pi) = \sum_{i=1}^k m_i \sigma(I_i), \quad \overline S(f, \pi) = \sum_{i=1}^k M_i \sigma(I_i) \]
分别称为\(f\)关于分割\(\pi\)的下和与上和。
定义4
设分割\(\pi = \pi_x \times \pi_y\)与\(\pi^\prime = \pi_x^\prime \times \pi_y^\prime\)是\(I\)的两个分割,如果\(\pi_x \le \pi_x^\prime\)且\(\pi_y \le \pi^\prime\),那么称分割\(\pi\)比\(\pi^\prime\)粗,或者称分割\(\pi^\prime\)比\(\pi\)细,记\(\pi \le \pi^\prime\)。
定理3
设\(\pi\)和\(\pi^\prime\)是矩形\(I\)的两个分割,并且\(\pi \le \pi^\prime\),那么
\[ \underline S(f, \pi) \le \underline S(f, \pi^\prime) \le \overline S(f, \pi^\prime) \le \overline S(f, \pi) \]
证:与函数积分三的定理2证明方法类似。
定理4
设\(\pi_1\)和\(\pi_2\)是\(I\)的任何两个分割,那么
\[ \underline S(f, \pi) \le \overline S(f, \pi) \]
证:与函数积分三的定理3证明方法类似。
定义5
所有下和构成的集合有上界,从而有上确界,令
\[ \underline {\int}_I f \mathrm{d} \sigma = \sup \limits_\pi \underline S(f, \pi) \]
称这个数为\(f\)在\(I\)上的下积分;而所有上和构成的集合有下界,从而有下确界,令
\[ \overline {\int}_I f \mathrm{d} \sigma = \inf \limits_\pi \overline S(f, \pi) \]
称这个数为\(f\)在\(I\)上的上积分。
定理6
等式
\[ \underline {\int}_I f \mathrm{d} \sigma = \overline {\int}_I \mathrm{d} \sigma \]
成立的充分必要条件是,对任意给定的\(\varepsilon > 0\),存在\(I\)的一个分割\(\pi\),使得
\[ \overline S(f, \pi) - \underline S(f, \pi) < \varepsilon \]
证:必要性。设
\[
A = \underline {\int}_I f \mathrm{d} \sigma = \overline {\int}
\mathrm{d} \sigma
\]
由下积分的定义可知,对任意给定的\(\varepsilon
> 0\),存在矩形\(I\)的一个分割\(\pi_1\),使得
\[
\underline S(f, \pi_1) > A - \frac{\varepsilon}{2}
\]
又由上积分的定义可知,存在矩形\(I\)的一个分割\(\pi_2\),使得
\[
\overline S(f, \pi_2) < A + \frac{\varepsilon}{2}
\]
把分割\(\pi_1\)与\(\pi_2\)合在一起得到分割\(\pi\),从而有
\[
A - \frac{\varepsilon}{2} < \underline S(f, \pi_1) \le \underline
S(f, \pi) \le \overline S(f, \pi) \le \overline S(f, \pi_2) < A +
\frac{\varepsilon}{2}
\]
从而有
\[
\overline S (f, \pi) - \underline S(f, \pi) < A +
\frac{\varepsilon}{2} - (A - \frac{\varepsilon}{2}) = \varepsilon
\]
充分性。有
\[
0 \le \overline \int_I f \mathrm{d} \sigma - \underline \int_I f
\mathrm{d} \sigma \le \overline S(f, \pi) - \underline S(f, \pi) <
\varepsilon
\]
由于\(\varepsilon\)是任意的正数,从而必有
\[
\underline \int_I f \mathrm{d} \sigma = \overline \int_I f
\mathrm{d} \sigma
\]
Q.E.D.
定理7
有界函数\(f\)在矩形\(I\)上可积的充分必要条件是
\[ \underline \int_I f \mathrm{d} \sigma = \overline \int_I f \mathrm{d} \sigma \]
这个公共的值就是积分值\(\displaystyle \int_I f \mathrm{d} \sigma\)。
证:必要性。设\(f\)在\(I\)上的积分值为\(A\),从而对任意的\(\varepsilon > 0\),必存在\(I\)的一个分割\(\pi = \{I_1, I_2, \cdots, I_k
\}\),对任意的值点$ I_i (i=1,2,,k) $,有不等式
\[
A - \varepsilon < \sum_{i=1}^k f(\boldsymbol{\xi_i}) \sigma(I_i)
< A + \varepsilon
\]
由于\(\boldsymbol{\xi_i}\)是任取的,所以有
\[
A - \varepsilon \le \underline S(f, \pi) \le \overline S(f, \pi) \le
A + \varepsilon
\]
从而
\[
A - \varepsilon \le \underline \int_I f \mathrm{d} \sigma \le
\overline \int_I f \mathrm{d} \sigma \le A + \varepsilon
\]
令\(\varepsilon \to 0\),可得
\[
\underline \int_I f \mathrm{d} \sigma = \overline \int_I f
\mathrm{d} \sigma = A
\]
充分性。假设
\[
\underline \int_I f \mathrm{d} \sigma = \overline \int_I f
\mathrm{d} \sigma = A
\]
成立。要证对任意\(\varepsilon >
0\),存在\(\delta >
0\),只要\(I\)的分割\(\pi = \{ I_1, I_2, \cdots, I_k
\}\)满足\(\Vert \pi \Vert <
\delta\),有
\[
|S(f, \pi) - A| < \varepsilon
\]
首先有
\[
\underline S(f, \pi) \le S(f, \pi) \le \overline S(f, \pi)
\]
而
\[
\underline S(f, \pi) \le A \le \overline S(f, \pi)
\]
所以
\[
|S(f, \pi) - A| \le \overline S(f, \pi) - \underline S(f, \pi) =
\sum_{j=1}^k f(M_j - m_j) \sigma(I_j) \tag{2}
\]
由于\(f\)在\(I\)上有界,不妨设\(|f(\boldsymbol{p})| \le M (\boldsymbol{p} \in
I)\);而由定理6可知,存在\(I\)的分割\(\pi_\varepsilon = \{J_1, J_2, \cdots,
J_t\}\),使得
\[
\overline S(f, \pi_\varepsilon) - \underline S(f, \pi_\varepsilon)
< \frac{\varepsilon}{2}
\]
将子矩形\(J_i\)的每一边平行的向矩形内部收缩同一距离\(\delta>0\),得到一个开矩形\(\tilde{J_i} \subset J_i (i=1,2,\cdots,
t)\),令
\[
K = I \cap \left( \bigcup \limits_{i=1}^t \tilde {J_i} \right)^c
\]
显然\(K\)是一个闭集,取\(\delta\)充分小,使得
\[
\sigma(K) < \frac{\varepsilon}{4M}
\]
这时将\((2)\)式写为
\[
|S(f, \pi) - A| \le \sum_{j=1}^k f(M_j - m_j) \sigma(I_j) = \sum
\nolimits_1 + \sum \nolimits_2
\]
其中
\[
\begin{aligned}
\sum \nolimits_1 = \sum_{I_j \subset K} (M_j - m_j) \sigma(I_j) \\
\sum \nolimits_2 = \sum_{I_j \nsubseteq K} (M_j - m_j) \sigma(I_j)
\end{aligned}
\]
一方面
\[
\sum \nolimits_1 \le 2M \sum_{I_j \subset K} \sigma(I_j) < 2M
\cdot \frac{\varepsilon}{4M} = \frac{\varepsilon}{2}
\]
另一方面,\(\sum \nolimits_2\)中的\(I_j \nsubseteq K\),从而\(I_j\)必与某个\(\tilde {J_i}\)相交,而\(\Vert \pi \Vert < \delta\),所以\(I_j \subset J_i\),所以
\[
\begin{aligned}
\sum \nolimits_2 &= \sum_{i=1}^t \sum_{I_j \subset J_i} (M_j -
m_j) \sigma(I_j) \\
& \le \sum_{i=1}^t (\sup f(J_i) - \inf f(J_i)) \sum_{I_j \subset
J_i} \sigma(I_j) \\
& \le \sum_{i=1}^t (\sup f(J_i) - \inf f(J_i)) \sigma(J_i) \\
& = \overline S(f, \pi) - \underline S(f, \pi) <
\frac{\varepsilon}{2}
\end{aligned}
\]
从而
\[
\sum \nolimits_1 + \sum \nolimits_2 < \frac{\varepsilon}{2} +
\frac{\varepsilon}{2} = \varepsilon
\]
即
\[
|S(f, \pi) - A| < \varepsilon
\]
Q.E.D.
定理8
设\(f\)在\(I = [a, b] \times [c, d]\)上有界,那么以下条件等价:
(1)\(f\)在\(I\)上可积;
(2)\(\displaystyle \lim_{\Vert \pi \Vert \to 0} \sum_{i=1}^k \omega_i \sigma(I_i) = 0\),其中\(\omega_i = M_i - m_i (i=1,2,\cdots,k)\);
(3)对任意的\(\varepsilon > 0\),存在\(I\)的一个分割\(\pi\),使得
\[ \overline S(f, \pi) - \underline S(f, \pi) < \varepsilon \]
(4)\(\displaystyle \underline \int_I f \mathrm{d} \sigma = \overline \int_I f \mathrm{d} \sigma\)。
证:\((2) \Rightarrow
(3)\)显然;\((3) \Rightarrow
(4)\)由定理6可知;\((4) \Rightarrow (1)\)由定理7可知;下面证\((1)\Rightarrow (2)\)。假设\(f\)在\(I\)上的积分值为\(A\),由可积的定义知,对任意的\(\varepsilon > 0\),存在\(\delta > 0\),使得对于分割\(\pi = \{ I_1, I_2, \cdots, I_k
\}\)满足\(\Vert \pi \Vert <
\delta\),则对任意的值点\(\boldsymbol{\xi_i}\)有
\[
A - \frac{\varepsilon}{2} < \sum_{i=1}^k f(\xi_i) < A +
\frac{\varepsilon}{2}
\]
由于\(\boldsymbol{\xi_i}\)是任取的,所以
\[
A - \frac{\varepsilon}{2} \le \underline S(f, \pi) \le \overline
S(f, \pi) \le A + \frac{\varepsilon}{2}
\]
即
\[
\overline S(f, \pi) - \underline S(f, \pi) = \sum_{i=1}^k \omega_i
\sigma(I_i) < \varepsilon
\]
所以
\[
\lim_{\Vert \pi \Vert \to 0} \sum_{i=1}^k \omega_i\sigma(I_i) = 0
\]
Q.E.D.