定义1:变上限积分
设\(f\)在\([a,b]\)上可积,从而对任何\(x \in [a,b]\),\(f\)在\([a,x]\)上也可积,因此定义函数
\[ F(x) = \int_a^x f(t) \mathrm{d} t \]
其中\(x\)可在\([a,b]\)上变化,称\(F(x)\)为上限变动的积分。
定理1
设\(f\)在\([a,b]\)上可积,那么变上限积分\(\displaystyle F(x) = \int_a^x f(t) \mathrm{d} t\)在\([a,b]\)上连续。
证:任取一点\(x_0 \in
(a,b)\),则
\[
\begin{aligned}
F(x_0 + h) - F(x_0) &= \int_a^{x_0+h} f(t) \mathrm{d} t -
\int_a^{x_0} f(t) \mathrm{d} t \\
&= \int_{x_0}^{x_0 + h} f(t) \mathrm{d} t
\end{aligned}
\]
这里\(h\)可正可负,但是\(x_0 + h \in [a,b]\)。由于\(f\)可知,从而由函数积分三的定理1可知,\(f\)有界,设\(|f(x)| \le M\)。当\(h>0\)时,由函数积分五的定理3可知
\[
|F(x_0 + h) - F(x_0)| = \left| \int_{x_0}^{x_0 + h} f(t) \mathrm{d}
t \right| \le \int_{x_0}^{x_0 + h} |f(t)| \mathrm{d} t \le Mh
\]
当\(h < 0\)时,
\[
|F(x_0 + h) - F(x_0)| = \left| \int_{x_0}^{x_0 + h} f(t) \mathrm{d}
t \right| = \left| \int_{x_0+h}^{x_0} f(t) \mathrm{d} t \right| \le
\int_{x_0+h}^{x_0} |f(t)| \mathrm{d} t \le M (-h) \le M|h|
\]
所以
\[
|F(x_0 + h) - F(x_0)| \le |Mh|
\]
令\(h \to 0\),可知\(F\)在\(x_0 \in
(a,b)\)处连续。\(x_0 =
a\)或\(x_0 =
b\)时,利用上述方法容易证得。
Q.E.D.
定理2
设函数\(f\)在\([a,b]\)上可积,在点\(x_0 \in [a,b]\)出连续,那么\(F\)在\(x_0\)处可导,且
\[ F^\prime(x_0) = f(x_0) \]
证:由定理1可得
\[
F(x_0 + h) - F(x_0) = \int_{x_0}^{x_0 + h} f(t) \mathrm{d} t
\]
从而
\[
\begin{aligned}
\frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) &= \frac{1}{h}
\int_{x_0}^{x_0 + h} f(t) \mathrm{d} t - \frac{1}{h} \int_{x_0}^{x_0 +
h} f(x_0) \mathrm{d} t \\
&= \frac{1}{h} \int_{x_0}^{x_0 + h} (f(t) - f(x_0)) \mathrm{d} t
\end{aligned}
\]
由于\(f\)在\(x_0\)处连续,对任意给定的\(\varepsilon > 0\),存在\(\delta > 0\),使得当\(|t - x_0| < \delta\)且\(t \in (a,b)\)时,有
\[
|f(t) - f(x_0)| < \varepsilon
\]
现取\(0 < |h| <
\delta\),从而有
\[
\begin{aligned}
\left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| &\le
\frac{1}{|h|} \left|\int_{x_0}^{x_0 + h} |f(t) - f(x_0)| \mathrm{d} t
\right|\\
& < \frac{1}{|h|} \varepsilon |h| = \varepsilon
\end{aligned}
\]
从而
\[
F^\prime(x_0) = \lim \limits_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h}
= f(x_0)
\]
Q.E.D.
定理3:微积分基本定理
设函数\(f\)在\([a,b]\)上连续,那么
\[ \frac{\mathrm{d}}{\mathrm{d}x} \int_a^x f(t) \mathrm{d} t = f(x) \quad (a \le x \le b) \]
证:利用定理2可直接推出。
Q.E.D.
定理4
[a,b]上的连续函数一定有原函数。
证:利用定理3可直接推出。
Q.E.D.
定理5:Newton-Leibniz
设\(f\)在\([a,b]\)上连续,\(G\)是\(f\)在\([a,b]\)上的任一原函数,那么
\[ \int_a^b f(x) \mathrm{d} x = G(b) - G(a) \]
证:由定理3可知\(\displaystyle F(x) = \int_a^x f(t) \mathrm{d}
t\)是\(f\)的一个原函数,所以
\[
\int_a^x f(t) \mathrm{d} t = G(x) + c
\]
在上式中令\(x = a\),得\(c = -G(a)\),将\(c\)代入上式,再令\(x=b\)即证得。
Q.E.D.
定理6
如果函数\(G\)在\([a,b]\)上有连续的导函数,那么
\[ \int_a^x G^\prime(t) \mathrm{d} t = G(x) - G(a) \quad (a \le x \le b) \]
证:从定理5的证明过程可以立即得出。
Q.E.D.
定理7:Taylor公式的积分余项
设函数\(f\)在\((a,b)\)上有直到\(n+1\)阶的连续导函数,那么对任意固定的\(x_0 \in (a,b)\),有
\[ f(x) = f(x_0) + \frac{1}{1!}f^\prime(x_0) (x - x_0) + \cdots + \frac{1}{n!}f^{(n)} (x_0) (x - x_0)^n + R_n(x) \]
其中
\[ R_n (x) = \frac{1}{n!}\int_{x_0}^x (x - t)^n f^{(n+1)}(t) \mathrm{d} t \quad (a < x < b) \]
证:记
\[
T_n(f, x_0;x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k
\]
则
\[
R_n(x) = f(x) - T_n(f, x_0;x)
\]
可知
\[
R_n^{(k)}(x_0) = 0 (k=0,1,\cdots,n), \quad R_n^{(n+1)}(x) =
f^{(n+1)}(x)
\]
连续使用分部积分公式可得
\[
\begin{aligned}
R_n(x) &= \int_{x_0}^x R^\prime_n(t) \mathrm{d} t = \int_{x_0}^x
R^\prime_n(t) \mathrm{d} (t-x) \\
&= (t-x)R^\prime_n(t) \Big|_{x_0}^x - \int_{x_0}^x
(t-x)R_n^{\prime\prime} \mathrm{d}t \\
&= -\frac{1}{2} \int_{x_0}^x R_n^{\prime\prime}(t) \mathrm{d} (t
- x)^2 \\
&= -\frac{1}{2} (t-x)^2 R_n^{\prime\prime}(t) \Big|_{x_0}^x +
\frac{1}{2}\int_{x_0}^x (t - x)^2 R_n^{\prime\prime\prime}(t) \mathrm{d}
t \\
&= \frac{1}{2} \int_{x_0}^x (t - x)^2 R^{\prime\prime\prime}(t)
\mathrm{d} t \\
&= \cdots \\
&= (-1)^n \frac{1}{n!}\int_{x_0}^x (t - x)^n R_n^{(n+1)} (t)
\mathrm{d} t \\
&= \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) \mathrm{d} t
\end{aligned}
\]
Q.E.D.