0%

函数积分五:可积函数的性质

定理1:积分的可加性

\(c \in (a,b)\),函数\(f\)\([a,c],[c,b]\)上可积,那么\(f\)\([a,b]\)上也可积,且
\[ \int_a^b f(x) \mathrm{d} x = \int_a^c f(x) \mathrm{d} x + \int_c^b f(x) \mathrm{d} x \]

证:由Lebesgue定理易知\(f\)\([a,b]\)上可积,取分割
\[ \begin{aligned} & \pi_1: a < a + \frac{1}{n}(c-a) < a+\frac{2}{n}(c-a) < \cdots < c \\ & \pi_2: c < c + \frac{1}{n}(b-c) < a+\frac{2}{n}(b-c) < \cdots < b \end{aligned} \]

\[ \begin{aligned} \int_a^c f(x) \mathrm{d} x = \lim_{n \to \infty} \sum_{i=1}^n f(a + \frac{i}{n}(c-a)) \frac{1}{n} \\ \int_c^b f(x) \mathrm{d} x = \lim_{n \to \infty} \sum_{i=1}^n f(c + \frac{i}{n}(b-c)) \frac{1}{n} \end{aligned} \]
取分割\(\pi = \pi_1 + \pi_2\),即
\[ \pi: a = x_0 < x_1 < \cdots < x_n < x_{n+1} < \cdots < x_{2n} = b \]
其中
\[ x_i = \left\{ \begin{aligned} &a+\frac{i}{n}(c - a) &(i=1, 2, \cdots, n) \\ &c+\frac{i-n}{n}(b - c) &(i=n+1, \cdots, 2n) \end{aligned} \right. \]
此时有
\[ \int_a^c f(x) \mathrm{d} x + \int_c^b f(x) \mathrm{d} x = \lim_{n \to \infty} \sum_{i=1}^{2n} f(x_i) \frac{1}{n} \]
有因为\(f\)\([a,b]\)上可积,所以
\[ \int_a^b f(x) \mathrm{d} x = \lim_{n \to \infty} \sum_{i=1}^{2n} f(x_i) \frac{1}{n} = \int_a^c f(x) \mathrm{d} x + \int_c^b f(x) \mathrm{d} x \]

Q.E.D.

定义1

为了后续积分的扩展,这里定义两个等式。设函数\(f\)\([a,b]\)上可积,则定义
(1)\(\displaystyle \int_a^a f(x) \mathrm{d} x = 0\)
(2)\(\displaystyle \int_b^a f(x) \mathrm{d} x = - \int_a^b f(x) \mathrm{d} x\)

定理2

如果\(f\)\([a,b]\)上连续且非负,但\(f\)不恒等于\(0\),那么
\[ \int_a^b f(x) \mathrm{d} x > 0 \]

证:设有一点\(x_0 \in [a,b]\),使得\(f(x_0) > 0\),则由连续函数的性质可知,存在一个子区间\([\alpha, \beta]\),满足\(x_0 \in [\alpha, \beta] \subset [a,b]\),使得对一切\(x \in [\alpha, \beta]\)
\[ f(x) \ge \frac{f(x_0)}{2} \]
从而
\[ \begin{aligned} \int_a^b f(x) \mathrm{d} x &= \int_a^\alpha f(x) \mathrm{d} x + \int_{\alpha}^{\beta} f(x) \mathrm{d} x + \int_{\beta}^b f(x) \mathrm{d}x \\ &\ge \int_{\alpha}^{\beta} f(x) \mathrm{d} x \ge \int_{\alpha}^{\beta} \frac{f(x_0)}{2} \mathrm{d} x = \frac{f(x_0)}{2} (\beta - \alpha) > 0 \end{aligned} \]

Q.E.D.

定理3

\(f\)\([a,b]\)上可积,那么\(|f|\)也在\([a,b]\)上可积,且
\[ \left| \int_a^b f(x) \mathrm{d} x\right| \le \int_a^b |f(x)| \mathrm{d}x \]

证:由于\(D(|f|) \subset D(f)\),所以\(|f|\)\([a,b]\)上可积,而
\[ - |f(x)| \le f(x) \le |f(x)| \]
所以
\[ - \int_a^b |f(x)| \mathrm{d}x \le \int_a^b f(x) \mathrm{d}x \le \int_a^b |f(x)| \mathrm{d}x \]

Q.E.D.

定理4:积分平均值定理

设函数\(f\)\(g\)\([a,b]\)上连续,\(g\)\([a,b]\)上不改变符号,则存在\(\xi \in (a,b)\),使得
\[ \int_a^b f(x)g(x) \mathrm{d} x = f(\xi) \int_a^b g(x) \mathrm{d} x \]

证:不妨设当\(x \in [a,b]\)时,\(g(x) \le 0\)但不恒等于0,从而\(\displaystyle \int_a^b g(x) \mathrm{d} x > 0\)。设\(m,M\)分别是\(f\)\([a,b]\)上的最小值和最大值,则
\[ m \le f(x) \le M \quad (a \le x \le b) \]
从而
\[ mg(x) \le f(x)g(x) \le M g(x) \]
求积分可得
\[ m\int_a^b g(x) \mathrm{d} x \le \int_a^b f(x)g(x) \mathrm{d} x \le M\int_a^b g(x) \mathrm{d}x \]
所以
\[ m \le \int_a^b f(x)g(x) \mathrm{d} x (\int_a^b g(x) \mathrm{d} x)^{-1} \le M \]
由连续函数的介值定理可知,存在一点\(\xi \in (a,b)\),使得
\[ f(\xi) = \int_a^b f(x)g(x) \mathrm{d} x (\int_a^b g(x) \mathrm{d} x)^{-1} \]

Q.E.D.

定理5

设函数\(f\)在区间\([a,b]\)上连续,则存在一点\(\xi \in [a,b]\),使得
\[ \int_a^b f(x) \mathrm{d} x = f(\xi)(b - a) \]

证:令定理4中的\(g = 1\),即可得。

Q.E.D.