0%

函数积分四:Lebesgue定理

定义1:零测度集

\(A\)为实数的集合,如果对任意给定的\(\varepsilon > 0\), 存在至多可数个开区间\(\{I_n: n \in \mathbb{N}^*\}\)组成\(A\)的一个开覆盖,并且\(\displaystyle \sum_{n=1}^{\infty} |I_n| \le \varepsilon\)(\(|I_n|\)表示开区间\(I_n\)的长度),那么称\(A\)是零测度集,简称零测集。

定理1

至多可数个零测集的并集是零测集。

证:设有可数个零测集
\[ A_1,A_2,\cdots, A_n,\cdots \]
对任意给定的\(\varepsilon > 0\)\(n \in N^*\),存在开区间族\(\{I_{ni}: n,i \in \mathbb{N^+}\}\)使得\(\displaystyle A_n \subset \bigcup \limits_{i=1}^\infty I_{ni}\),且\(\displaystyle \sum_{i=1}^\infty |I_{ni}| \le \frac{\varepsilon}{2^n}\),此时有
\[ \bigcup \limits_{i=1}^\infty A_n \subset \bigcup \limits_{i=1}^\infty (\bigcup \limits_{i=1}^\infty I_{ni}) \]

\[ \sum_{i=1}^\infty \sum_{i=1}^\infty |I_{ni}| \le \sum_{i=1}^\infty \frac{\varepsilon}{2^n} = \varepsilon \]
这就证明了\(\displaystyle \bigcup \limits_{i=1}^\infty A_i\)是零测集。

Q.E.D.

定理2

\(\omega\)是有界函数\(f\)\([a,b]\)上的振幅,那么
\[ \omega = \sup \{ |f(y_1) - f(y_2)|: y_1,y_2 \in [a,b] \} \]

证:用\(M\)\(m\)分别表示\(f\)\([a,b]\)上的上、下确界,那么由定义可知,\(\omega = M - m\),又由于对于任意的$y_1,y_2 $,有
\[ m \le f(y_1) \le M, \quad m \le f(y_2) \le M \]
从而
\[ \omega = M - m \ge |f(y_1) - f(y_2)| \]
另一方面,由于\(M = \sup\{ f(y): y\in [a,b] \}\)\(m = \inf\{ f(y): y \in [a,b] \}\),所以对任意的\(\varepsilon > 0\),存在\(y_1,y_2 \in [a,b]\),使得
\[ f(y_1) \ge M - \frac{\varepsilon}{2}, \quad f(y_2) \le m + \frac{\varepsilon}{2} \]
从而
\[ |f(y_1) - f(y_2)| \ge f(y_1) - f(y_2) \ge M - m - \varepsilon = \omega - \varepsilon \]
所以\(\omega\)\(\{ |f(y_1) - f(y_2)|: y_1,y_2 \in [a,b] \}\)的上确界。

Q.E.D.

定理3

\(\omega_f(x, r)\)\(f\)\(B_r(x)\)区间的振幅,则\(\lim \limits_{r \to 0^+} \omega_f(x, r)\)极限存在,并记
\[ \omega_f(x) = \lim \limits_{r \to 0^+} \omega_f(x, r) \]
\(\omega_f(x)\)\(f\)在点\(x\)处的振幅。

证:由于\(\omega_f(x, r) \ge 0\),有下界,且当\(r\)减少时,\(f\)\(B_r(x)\)区间的上确界\(M\)递减,下确界\(m\)递增,所以\(\omega_f(x, r)\)递减,从而\(\displaystyle \lim \limits_{r \to 0^+} \omega_f(x, r)\)存在。

Q.E.D.

定理4

函数\(f\)\(x \in I\)处连续的充分必要条件是\(\omega_f(x) = 0\)

证:必要性。设\(f\)\(x \in I\)处连续,则对任意给定的\(\varepsilon > 0\),当\(r > 0\)充分小时,存在\(y \in B_r(x)\)时,有
\[ |f(y) - f(x)| < \frac{\varepsilon}{2} \]
从而当\(y_1,y_2 \in B_r(x)\)时,有
\[ |f(y_1) - f(y_2)| \le |f(y_1) - f(x)| + |f(x) - f(y_2)| < \varepsilon \]
所以\(\omega_f(x, r) \le \varepsilon\),令\(r \to 0^+\),此时有\(0 < \omega_f(x) \le \varepsilon\),由于\(\varepsilon\)是任取的,所以\(\omega_f(x) = 0\)
充分性。设\(\omega_f(x) = 0\),则对任意的\(\varepsilon > 0\),存在\(r > 0\),使得
\[ \omega_f(x, r) < \varepsilon \]
从而对任何的\(y \in B_r(x)\),有
\[ |f(x) - f(y)| \le \omega_f(x, r) < \varepsilon \]
即表明\(f\)在点\(x\)处连续。

Q.E.D.

定理5

\(\delta > 0\),记
\[ D_\delta = \{ x \in [a, b]: \omega_f(x) \ge \delta\} \]
\(D(f)\)\(f\)\([a,b]\)上不连续点的全体。则有
\[ D(f) = \bigcup \limits_{n=1}^\infty D_{1/n} \]

证:任取\(x \in \bigcup \limits_{n=1}^\infty D_{1/n}\),知\(\omega_f(x) > 0\),从而由定理4可知\(x\)\(f\)的不连续点,从而
\[ \bigcup \limits_{n=1}^\infty D_{1/n} \subset D(f) \tag{1} \]
反之,任取\(x \in D(f)\),可知\(\omega_f(x) > 0\),从而存在充分大的\(m \in \mathbb{N^+}\),使得\(\displaystyle \omega_f(x) \ge \frac{1}{m}\),从而有\(x \in D_{1/m}\),所以
\[ D(f) \subset \bigcup \limits_{i=1}^\infty D_{1/n} \tag{2} \]
从而由(1)和(2)可知
\[ D(f) = \bigcup \limits_{i=1}^\infty D_{1/n} \]

Q.E.D.

定理6

\(f:[a,b] \to \mathbb{R}\)。如果存在一列区间\((\alpha_j, \beta_j)(j=1,2,\cdots,)\),使得\(D(f) \subset \bigcup \limits_{i=1}^\infty (\alpha_j, \beta_j)\),记\(K = [a,b] \backslash \bigcup \limits_{i=1}^\infty (\alpha_j, \beta_j)\),那么对任意的\(\varepsilon > 0\),存在\(\delta > 0\),当\(x \in K, y \in [a,b]\),且\(|x - y| < \delta\)时,有\(|f(x) - f(y)| < \varepsilon\)

证:反证法。如果结论不成立,则必存在\(\varepsilon_0 > 0\)以及\(s_n \in K, t_n \in [a,b]\),使得当\(|s_n - t_n| < 1 / n\)时,有
\[ |f(s_n) - f(t_n)| \ge \varepsilon_0 \]
由于\(\{s_n\} \subset K \subset [a,b]\),存在必有\(\{s_n\}\)的子列\(\{s_{k_n}\}\),使得
\[ \lim \limits_{n \to \infty} s_{k_n} = s^* \]
又由于\(K\)是闭集,从而\(s^* \in K\)。而
\[ \begin{aligned} |t_{k_n} - s^*| &\le |t_{k_n} - s_{k_n}| + |s_{k_n} - s^*| \\ & \le \frac{1}{k_n} + |s_{k_n} - s^*| \le \frac{1}{n} + |s_{k_n} - s^*| \end{aligned} \]
\(n \to \infty\),得\(t_{k_n} \to s^*\),由于\(s^* \in K\),所以\(f\)\(s^*\)处连续,且
\[ |f(s_{k_n}) - f(t_{k_n})| \ge \varepsilon_0 \]
令上式左边\(n \to \infty\),得
\[ \varepsilon_0 \le |f(s^*) - f(s^*)| = 0 \]
显然与\(\varepsilon_0 > 0\)矛盾。

Q.E.D.

定理7:Lebesgue

设函数\(f\)在有限区间\([a,b]\)上有界,那么\(f\)\([a.b]\)上Riemann可积的充分必要条件是\(D(f)\)是一个零测集。

证:必要性。只需要证明对任意的\(\delta > 0\)\(D_{\delta}\)是零测集,从而\(D_1,D_{1/2},\cdots\)都是零测集,再由定理5可知\(D(f)\)是零测集。由于\(f\)可积,从而由函数积分三的定理5可知对任意给定的\(\varepsilon > 0\),存在\([a,b]\)上的一个分割
\[ \pi: a = x_0 < x_1 < \cdots < x_m = b \]
使得
\[ \sum_{i=1}^m \omega_i \Delta x_i < \frac{\delta \epsilon}{2} \]
\(x \in D_{\delta}\),可知如果\(x\)不是\(x_0,x_1,\cdots, x_m\)中的任一个,则存在\(i \in {1,2,\cdots,m}\),使得\(x \in (x_{i-1}, x_i)\),因此存在充分小的\(r>0\),使得\((x-r, x+r) \subset (x_{i-1}, x_i)\),于是\(f\)\((x_{i-1}, x_i)\)上的振幅
\[ \omega_i \ge w_f(x, r) \ge w_f(x) \ge \delta \]
如果用\(\sum^\prime\)\(\bigcup^\prime\)分别表示对满足\(D_{\delta} \cap (x_{i-1}, x_i) \ne \varnothing\)\(i\)的求和与求并,则
\[ \frac{\delta \epsilon}{2} > \sum \limits_{i=1}^m \omega_i \Delta x_i \ge \sum \nolimits^\prime \omega_i \Delta x_i \ge \delta \sum \nolimits^\prime \Delta x_i \]
所以
\[ \sum \nolimits^\prime \Delta x_i \le \frac{\varepsilon}{2} \]

\[ D_\delta \subset (\bigcup \nolimits^\prime (x_{i-1}, x_i)) \bigcup \{ x_0, x_1, \cdots,x_m \} \]
自然有
\[ D_\delta \subset (\bigcup \nolimits^\prime (x_{i-1}, x_i)) \bigcup (\bigcup_{j=0}^m (x_j - \frac{\varepsilon}{4(m+1)}, x_j + \frac{\varepsilon}{4(m+1)})) \]

\[ \sum \nolimits^\prime \Delta x_i + (m+1) \frac{2\varepsilon}{4(m+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \]
所以\(D_\delta\)是零测集。

充分性。设\(D(f)\)是一个零测集,并且对任意给定的\(\varepsilon > 0\),存在一列开区间\((\alpha_i, \beta_i)(i=1,2,\cdots)\),使得
\[ D(f) \subset \bigcup \limits_{i=1}^\infty (\alpha_i, \beta_i), \quad 且 \quad \sum_{i=1}^\infty (\beta_i - \alpha_i) < \frac{\varepsilon}{2\omega} \]
这里\(\omega\)\(f\)\([a,b]\)上的振幅。令
\[ K = [a, b] \backslash \bigcup \limits_{i=1}^\infty (\alpha_i, \beta_i) \]
定理6可知,对上述的\(\varepsilon > 0\),存在\(\delta > 0\), 使得当\(x \in K, y \in [a, b]\)\(|x - y| < \delta\)时,有
\[ |f(x) - f(y)| < \frac{\varepsilon}{4(b - a)} \]
现取分割
\[ \pi : a = x_0 < x_1 < \cdots < x_n = b \]
\(\Vert \pi \Vert < \delta\),记
\[ \sum_{i=1}^\infty \omega_i \Delta x_i = \sum \nolimits_1 \omega_i \Delta x_i + \sum \nolimits_2 \omega_i \Delta x_i \]
其中\(\sum_1\)表示对满足\(K \cap (x_{i-1}, x_i) \ne \varnothing\)\(i\)的求和,\(\sum_2\)表示对满足\(K \cap (x_{i-1}, x_i) = \varnothing\)\(i\)的求和。对\(\sum_1\)中的项,任取\(y_i \in K \cap (x_{i-1}, x_i)\),由定理6
\[ \begin{aligned} \omega_i &= sup\{ |f(z_1) - f(z_2)|: z_1, z_2 \in [x_{i-1}, x_i] \} & \\ &\le sup\{ |f(z_1) - f(y_i)| + |f(z_2) - f(y_i)|: z_1,z_2 \in [x_{i-1}, x_i], y_i \in K \cap (x_{i-1}, x_i)\} \\ & \le \frac{\varepsilon}{2(b-a)} \end{aligned} \]
所以
\[ \sum \nolimits_1 \omega_i \Delta x_i < \frac{\varepsilon}{2(b-a)} (b-a) = \frac{\varepsilon}{2} \]
对于\(\sum_2\)中的项,当\(x \in (x_{i-1}, x_i)\)时,必有\(x \notin K\),所以\(\displaystyle x \in \bigcup_{i=1}^\infty (\alpha_i, \beta_i)\),即\(\displaystyle (x_{i-1}, x_i) \subset \bigcup_{i=1}^\infty (\alpha_i, \beta_i)\),所以
\[ \sum \nolimits_2 \omega_i \Delta x_i \le \omega \sum \nolimits_2 \Delta x_i < \omega \frac{\varepsilon}{2\omega} = \frac{\varepsilon}{2} \]
所以
\[ \sum_{i=1}^\infty \omega_i \Delta x_i < \varepsilon \]

Q.E.D.