定义1:分割
在区间\([a,b]\)上,记分割
\[ \pi : a = x_0 < x_1 < \cdots < x_n = b \]
把\([a,b]\)分成\(n\)个小区间\([x_{i-1},x_i]\),其长度为\(\Delta x_i = x_i - x_{i-1} (i=-1,2,\cdots,n)\)。并称\(\{x_0, x_1, \cdots,x_n\}\)为\(\pi\)的分点序列。令
\[ \Vert \pi \Vert = \max \limits_{1 \le i \le n} \{ \Delta x_i \} \]
称\(\Vert \pi \Vert\)为分割\(\pi\)的宽度。
定义2:Riemann积分
设函数\(f\)在区间\([a,b]\)上有定义,如果实数\(I\)使得对任意给定的\(\varepsilon > 0\),存在\(\delta > 0\),只要\([a,b]\)的分割\(\pi\)满足\(\Vert \pi \Vert < \delta\),而不管\(\xi_i \in [x_{i-1}, x_i] (1 \le i \le n)\)如何选择,都有
\[ |I - \sum_{i=1}^n f(\xi_i) \Delta x_i| < \varepsilon \]
成立,则称\(f\)在\([a,b]\)上Riemann可积,称\(I\)是\(f\)在\([a,b]\)上的Riemann积分,通常用
\[ \int_a^b f(x) \mathrm{d} x \]
来表示。其中\(b\)与\(a\)分别称为积分的上限与下限,\(f\)称为被积函数。和式
\[ \sum_{i=1}^n f(\xi_i) \Delta x_i \]
称为\(f\)的Riemann和(也称积分和),\(\{\xi_1, \xi_2, \cdots, \xi_n\}\)称为此积分和的值点序列。
定理1
如果函数\(f,g\)在\([a,b]\)可积且非负,那么
(1)
\[ \int_a^b f(x) \mathrm{d} x \ge 0 \]
(2)如果\(f \ge g\)在\([a,b]\)上成立,则
\[ \int_a^b f(x) \mathrm{d} x \ge \int_a^b g(x) \mathrm{d} x \]
(3)\(f \pm g\)在\([a,b]\)上也可积,且
\[ \int_a^b (f(x) \pm g(x)) \mathrm{d} x = \int_a^b f(x) \mathrm{d} x \pm \int_a^b g(x) \mathrm{d} x \]
(4)对任意的常数\(c\),函数\(cf\)也在\([a,b]\)上可积,且
\[ \int_a^b cf(x) \mathrm{d} x = c \int_a^b f(x) \mathrm{d} x \]
证:由积分的定义容易推出。
Q.E.D.
定理2:Newton-Leibiniz
设函数\(f\)在\([a,b]\)上可积,且在\((a,b)\)上有原函数\(F\),如果\(F\)在\([a,b]\)上连续,那么必有
\[ \int_a^b f(x) \mathrm{d} x = F(b) - F(a) \]
为了方便,引入记号
\[ F(x) \Big|_a^b = F(b) - F(a) \]
从而
\[ \int_a^b f(x) \mathrm{d} x = F(x) \Big|_a^b \]
证:用分点\(a = x_0 < x_1 < \cdots
< x_n=b\)把区间\([a,b]\)作\(n\)等分,即\(x_i
- x_{i-1} = (b-a) / n (i=1,2,\cdots,n)\),于是
\[
F(b) - F(a) = \sum_{i=1}^n (F(x_i) - F(x_{i-1}))
\]
对\(F\)使用微分中值定理,有
\[
F(b) - F(a) = \sum_{i=1}^n F^\prime(\xi_i) \Delta x_i = \sum_{i=1}^n
f(\xi_i) \Delta x_i \tag{1}
\]
这里\(\xi_i \in (x_{i-1},
x_i)(i=1,2,\cdots,n)\),由于\(f\)在\([a,b]\)上可积,所以当\(n \to \infty\)时,式(1)的右边以\(\displaystyle \int_a^b f(x) \mathrm{d}
x\)为极限,从而在式(1)两边令\(n \to
\infty\),可得
\[
F(b) - F(a) = \int_a^b f(x) \mathrm{d} x
\]
Q.E.D.
定理3:分部积分公式
设\(u,v\)是两个可导的函数,且公式中存在的函数积分在\([a,b]\)上都存在,则
\[ \int_a^b u(x)v^\prime(x) \mathrm{d} x = u(x)v(x)\Big|_a^b - \int_a^b u^\prime(x)v(x) \mathrm{d} x \]
或写成微分形式
\[ \int_a^b u \mathrm{d} v = u v\Big|_a^b - \int_a^b v \mathrm{d} u \]
证:由求导法则可知
\[
(uv)^\prime = uv^\prime + vu^\prime
\]
对上式两边求不定积分得
\[
\int_a^b (uv)^\prime \mathrm{d} x = \int_a^b uv^\prime \mathrm{d}x +
\int_a^b vu^\prime \mathrm{d}x
\]
从而有Newton-Leibniz公式可得
\[
\int_a^b u \mathrm{d} v = u v \Big|_a^b - \int_a^b v \mathrm{d} u
\]
Q.E.D.
定理4
设函数\(f\)在区间\(I\)上连续,\(a,b \in I\),函数\(\varphi\)在区间\([\alpha, \beta]\)上有连续的导函数,\(\varphi([\alpha, \beta]) \subset I\),且\(\varphi(\alpha) = a, \varphi(\beta) = b\),若公式中存在的函数积分在\([a,b]\)上都存在,那么
\[ \int_a^b f(x) \mathrm{d} x = \int_{\alpha}^{\beta} f \circ \varphi(t) \varphi^\prime(t) \mathrm{d} x \]
证:设\(F\)是\(f\)在\([a,b]\)上的一个原函数,则
\[
(F \circ \varphi(t))^\prime = F^\prime \circ \varphi(t)
\varphi^\prime(t) = f \circ \varphi(t) \varphi^\prime(t)
\]
从而\(f \circ \varphi(t)
\varphi^\prime(t)\)的一个原函数为\(F\circ \varphi(t)\),从而由Newton-Leibniz公式可知
\[
\int_{\alpha}^{\beta} f \circ \varphi(t) \varphi^\prime(t)
\mathrm{d} x = F\circ \varphi(t) \Big|_{\alpha}^{\beta} = F(b) - F(a) =
\int_a^b f(x) \mathrm{d} x
\]
Q.E.D.