定理1: 局部逆映射定理
设开集\(D \subset \mathbb{R}^n\),\(\boldsymbol{f}: D \to \mathbb{R}^n\),满足:
(a)\(\boldsymbol{f} \in C^1(D)\);
(b)有\(\boldsymbol{x}_0 \in D\),使得
\[ \det J\boldsymbol{f}(\boldsymbol{x}_0) \ne 0 \]
记\(\boldsymbol{y}_0 = \boldsymbol{f}(\boldsymbol{x}_0)\),那么存在\(\boldsymbol{x}_0\)的一个邻域\(U\)和\(\boldsymbol{y}_0\)的一个邻域\(V\),使得
(1)\(\boldsymbol{f}(U) = V\),且\(\boldsymbol{f}\)在\(U\)上是单射;
(2)记\(\boldsymbol{g}\)是\(\boldsymbol{f}\)在\(U\)上的逆映射,\(\boldsymbol{g} \in C^1(V)\);
(3)当\(\boldsymbol{y} \in V\)时,
\[ J\boldsymbol{g}(\boldsymbol{y}) = (J\boldsymbol{f}(\boldsymbol{x}))^{-1} \]
其中\(\boldsymbol{x} = \boldsymbol{g}(\boldsymbol{y})\)。
证:令
\[
\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}) =
\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}
\]
这个映射定义在\(D \times
\mathbb{R}^n\)上,显然有\(\boldsymbol{F} \in C^1(D \times
\mathbb{R}^n)\),并且、
\[
\boldsymbol{F}(\boldsymbol{x}_0, \boldsymbol{y}_0) =
\boldsymbol{f}(\boldsymbol{x}_0) - \boldsymbol{y}_0 = \boldsymbol{0}
\]
再由条件(b)可知,
\[
\det J_{\boldsymbol{x}} \boldsymbol{F} (\boldsymbol{x}_0,
\boldsymbol{y}_0) = \det J\boldsymbol{f}(\boldsymbol{x}_0) \ne 0
\]
从而由函数导数十的定理3可知,存在\(\boldsymbol{x}_0\)的邻域\(H\)和\(\boldsymbol{y}_0\)的邻域\(V\),其中\(H
\subset D\),使得对每一点\(\boldsymbol{y} \in V\),方程\(\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}) =
\boldsymbol{0}\)即\(\boldsymbol{f}(\boldsymbol{x}) =
\boldsymbol{y}\)在\(H\)中有唯一解,记作\(\boldsymbol{g}(\boldsymbol{y})\),其中\(\boldsymbol{g} \in C^1(V)\),并且当\(\boldsymbol{y} \in V\)时,
\[
\begin{aligned}
J\boldsymbol{g}(\boldsymbol{y}) &=
-(J_{\boldsymbol{x}}\boldsymbol{F}(\boldsymbol{x},
\boldsymbol{y}))^{-1}J_{\boldsymbol{y}}\boldsymbol{F}(\boldsymbol{x},
\boldsymbol{y}) \\
&= -(J\boldsymbol{f}(\boldsymbol{x}))^{-1}(-\boldsymbol{I}_n) \\
&= (J\boldsymbol{f}(\boldsymbol{x}))^{-1}
\end{aligned}
\]
其中\(\boldsymbol{x} =
\boldsymbol{g}(\boldsymbol{y})\)。令\(U
= \boldsymbol{g}(V)\),可见\(V =
\boldsymbol{f}(U)\),\(\boldsymbol{f}\)与\(\boldsymbol{U}\)互为逆映射,最后证明\(U\)是开集,事实上有\(U = H \cap
\boldsymbol{f}^{-1}(V)\),由于\(V\)是开集且\(\boldsymbol{f}\)是连续映射,从而根据函数极限七的定理3知\(\boldsymbol{f}^{-1}(V)\)是开集,又英文\(H\)是开集,所以\(U\)也是开集。
定理2:逆映射定理
设开集\(D \subset \mathbb{R}^n\),\(\boldsymbol{f}: D \to \mathbb{R}^n\),满足:
(a)\(\boldsymbol{f} \in C^1(D)\);
(b)对每一个\(\boldsymbol{x} \in D\),有\(\det J\boldsymbol{f}(\boldsymbol{x}) \ne 0\)
那么\(G = \boldsymbol{f}(D)\)是一开集,又如果:
(c)\(\boldsymbol{f}\)是\(D\)上的单射,
那么:
(1)存在从\(G\)到\(D\)上的映射\(\boldsymbol{f}^{-1}\),满足:对一切\(\boldsymbol{y} \in G\),有
\[ \boldsymbol{f} \circ \boldsymbol{f}^{-1}(\boldsymbol{y}) = \boldsymbol{y} \]
(2)\(\boldsymbol{f}^{-1} \in C^1(G)\);
(3)
\[ J\boldsymbol{f}^{-1}(\boldsymbol{y}) = (J\boldsymbol{f}(\boldsymbol{x}))^{-1} \quad (\boldsymbol{x} = J\boldsymbol{f}^{-1}(\boldsymbol{y})) \]
证:由于\(\boldsymbol{f}\)是单射,所以逆映射\(\boldsymbol{f}^{-1}\)必然存在,所以(1)成立;再由定理1可知,(2)(3)自然也成立。接下来只需证明\(\boldsymbol{f}(D)\)是开集,任取\(\boldsymbol{y} \in G\),由定理1可知,存在\(\boldsymbol{x}\)的一个邻域\(U\)和\(\boldsymbol{y}\)的一个邻域\(V\),使得\(V = \boldsymbol{f}(U) \subset \boldsymbol{f}(D) = G\),即\(\boldsymbol{y}\)是\(G\)的内点,从而\(G\)是开集。
定义2:正则映射
设开集\(D \subset \mathbb{R}^n\),\(\boldsymbol{f}: D \to \mathbb{R}^n\),满足以下三个条件:
(1)\(\boldsymbol{f} \in C^1(D)\);
(2)\(\boldsymbol{f}\)是\(D\)上的单射;
(3)\(\det J\boldsymbol{f}(\boldsymbol{x}) \ne 0\)对一切\(\boldsymbol{x} \in D\)成立。
则称\(\boldsymbol{f}\)是\(D\)上的一个正则映射。