0%

函数导数八:多变量函数的微分

定义1

设开集\(D \subset \mathbb{R}^n\)\(f: D \to \mathbb{R}\)\(\boldsymbol{u}\)是一个方向,\(x_0 \in D\),如果极限
\[ \lim \limits_{t \to 0} \frac{f(\boldsymbol{x}_0 + t\boldsymbol{u}) - f(\boldsymbol{x})}{t} \]
存在且有限,则称这个极限为函数\(f\)\(\boldsymbol{x}_0\)处沿方向\(u\)的方向导数,记为\(\dfrac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{x}_0)\)

定义2

记单位坐标向量
\[ \begin{aligned} & \boldsymbol{e}_1 = (1, 0, 0, \cdots, 0) \\ & \boldsymbol{e}_2 = (0, 1, 0, \cdots, 0) \\ & \cdots \\ & \boldsymbol{e}_n = (0, 0, 0, \cdots, 1) \end{aligned} \]
称函数\(f\)在点\(\boldsymbol{x}_0\)处沿方向\(\boldsymbol{e}_i\)的方向导数为\(f\)\(\boldsymbol{x}_0\)处的第\(i\)个一阶偏导数,记作
\[ \frac{\partial f}{\partial x_i} (\boldsymbol{x}_0) 或 \mathrm{D}_if(\boldsymbol{x}_0) \]
并称\(\mathrm{D}_i = \dfrac{\partial}{\partial x_i}\)为第\(i\)个偏微分算子\((i=1,2,\cdots,n)\);令
\[ \boldsymbol{J}f(\boldsymbol{x}) = (\mathrm{D_1}f(\boldsymbol{x}),\mathrm{D_2}f(\boldsymbol{x}),\cdots,\mathrm{D_n}f(\boldsymbol{x})) \]
并称它为函数\(f\)在点\(\boldsymbol{x}\)处的Jacobi矩阵\(1 \times n\)矩阵。Jacobi矩阵也常记作\(\mathrm{grad} f\)\(\nabla f\),也称为数量函数\(f\)的梯度。


设开集\(D \subset \mathbb{R}^n\)\(f: D \to \mathbb{R}\),取定一点\(\boldsymbol{x}_0 \in D\)\(\boldsymbol{h} \in \mathbb{R}^n\)。由于\(\boldsymbol{x}_0\)\(D\)的一个内点,故当\(\Vert \boldsymbol{h} \Vert\)充分小时,可以使\(\boldsymbol{x}_0+\boldsymbol{h}\)完全在\(D\)之内。

定义3

\(\boldsymbol{h}=(h_1,h_2,\cdots,h_n)\),如果成立
\[ f(\boldsymbol{x}_0 + \boldsymbol{h}) - f(\boldsymbol{x}_0) = \sum_{i=1}^n \lambda_i h_i + o(\Vert \boldsymbol{h} \Vert) \quad (\Vert \boldsymbol{h} \Vert \to 0) \]
其中\(\lambda_i(i=1,2,\cdots,n)\)是不依赖于\(\boldsymbol{h}\)的常数,那么称函数\(f\)在点\(\boldsymbol{x}_0\)处可微,并称\(\sum \limits_{i=1}^n \lambda_i h_i\)\(f\)\(\boldsymbol{x}_0\)处的微分,记作
\[ \mathrm{d}f(\boldsymbol{x}_0) (\boldsymbol{h}) = \sum_{i=1}^n \lambda_i h_i \]
如果\(f\)在开集\(D\)上的每一点处都可微,则称\(f\)\(D\)上的可微函数。

定理1

为了方便,将\(\boldsymbol{x}_0,\boldsymbol{h}\)表示列向量形式,设函数\(f\)\(\boldsymbol{x}_0 = (x_1,x_2,\cdots,x_n)^T\)处可微,则
\[ \mathrm{d}f(\boldsymbol{x}_0) (\boldsymbol{h}) = \boldsymbol{J}f(\boldsymbol{x_0}) \boldsymbol{h} \]

证:定义3中令\(\boldsymbol{h} = (h_1,0,\cdots, 0)^T\),此时
\[ f(x_1+h_1, x_2, \cdots, x_n) - f(x_1,x_2,\cdots,x_n) = \lambda_1 h_1 + o(|h_1|) \]
从而
\[ \frac{f(x_1+h_1, x_2, \cdots, x_n) - f(x_1,x_2,\cdots,x_n)}{h_1} = \lambda_1 + o(1) \]
\(h_1 \to 0\),得
\[ \lambda_1 = \mathrm{D}_1f(\boldsymbol{x}_0) \]
一般地,有
\[ \lambda_i = \mathrm{D}_if(\boldsymbol{x}_0) \quad (i=1,2,\cdots,n) \]
所以有
\[ \mathrm{d}f(\boldsymbol{x}_0) (\boldsymbol{h}) = \boldsymbol{J}f(\boldsymbol{x_0}) \boldsymbol{h} \]
Q.E.D.

定理2

\(f\)\(\boldsymbol{x}_0\)处可微,则\(f\)必在\(\boldsymbol{x}_0\)处连续。

证:由于\(f\)\(\boldsymbol{x}_0\)处可微,当\(\boldsymbol{h} \to \boldsymbol{0}\)时,有\(h_i \to 0 (i=1,2,\cdots,n)\),此时\(\mathrm{d}f(\boldsymbol{x}_0) (\boldsymbol{h}) = \sum \limits_{i=1}^n \lambda_i h_i \to 0\),从而\(f(\boldsymbol{x_0} + \boldsymbol{h}) - f(\boldsymbol{x}_0) \to 0\),所以\(f\)\(\boldsymbol{x}_0\)处连续。
Q.E.D.

定理3

函数\(f\)\(\boldsymbol{x}_0\)处可微当且仅当等式
\[ f(\boldsymbol{x}_0 + \boldsymbol{h}) - f(\boldsymbol{x}_0) = \boldsymbol{J}f(\boldsymbol{x}_0) \boldsymbol{h} + \sum_{i=1}^n \beta_i(\boldsymbol{h}) h_i \]
成立。其中,当\(\Vert \boldsymbol{h} \Vert \to 0\)时,
\[ \beta_i(\boldsymbol{h}) \to 0 \quad (i=1,2,\cdots,n) \]

证:充分性。当\(\boldsymbol{h} \to \boldsymbol{0}\)时,有
\[ \frac{1}{\Vert \boldsymbol{h} \Vert} |\sum_{i=1}^n \beta_i(\boldsymbol{h})h_i| = \left| \sum_{i=1}^n \beta_i(\boldsymbol{h}) \frac{h_i}{\boldsymbol{\Vert h \Vert}} \right| \le \left| \sum_{i=1}^n \beta_i(\boldsymbol{h}) \right| \to 0 \]

\[ \sum_{i=1}^n \beta_i(\boldsymbol{h}) h_i = o(\Vert \boldsymbol{h} \Vert) \]
定义3可知,函数\(f\)\(\boldsymbol{x}_0\)处可微。
必要性。记
\[ r(\boldsymbol{h}) = f(\boldsymbol{x}_0 + \boldsymbol{h}) - f(\boldsymbol{x}_0) - \boldsymbol{J}f(\boldsymbol{x_0}) \boldsymbol{h} \]
可知当\(\Vert \boldsymbol{h} \Vert \to 0\)时,有\(r(\boldsymbol{h}) = o(\Vert \boldsymbol{h} \Vert)\),由于
\[ r(\boldsymbol{h}) = \left(\sum_{i=1}^n \frac{h_i}{\Vert \boldsymbol{h} \Vert} h_i \right)\frac{r(\boldsymbol{h})}{\Vert \boldsymbol{h} \Vert} \]
故令
\[ \beta_i(\boldsymbol{h}) = \frac{r(\boldsymbol{h})}{\Vert \boldsymbol{h} \Vert} \frac{h_i}{\Vert \boldsymbol{h} \Vert} \]
由于
\[ \frac{h_i}{\Vert \boldsymbol{h} \Vert} \le 1 \quad (i=1,2,\cdots,n) \]
从而可知\(\beta_i(\boldsymbol{h}) \to 0\),且
\[ f(\boldsymbol{x}_0 + \boldsymbol{h}) - f(\boldsymbol{x}_0) = \boldsymbol{J}f(\boldsymbol{x}_0) \boldsymbol{h} + \sum_{i=1}^n \beta_i(\boldsymbol{h}) h_i \]

Q.E.D.

定理4

设开集\(D \subset \mathbb{R}^n\)\(f: D \to \mathbb{R}\)\(\boldsymbol{x}_0 \in D\),如果\(\mathrm{D}_if(\boldsymbol{x}) (i=1,2,\cdots,n)\)\(\boldsymbol{x}_0\)的一个邻域中存在且在点\(\boldsymbol{x}_0\)处连续,则\(f\)在点\(\boldsymbol{x}_0\)处可微。

证:使用数学归纳法。当\(n=1\)时自然成立,因为单变量函数的导数存在即可微。设定理对\(n-1\)维成立,令
\[ f(\boldsymbol{x}_0 + \boldsymbol{h}) - f(\boldsymbol{x}_0) = K_1 + K_2 \]
其中
\[ \begin{aligned} & K_1 = f(x_1+h_1,x_2+h_2,\cdots,x_n+h_n) - f(x_1+h_1,\cdots,x_{n-1}+h_{n-1},x_n) \\ & K_2 = f(x_1+h_1,\cdots,x_{n-1}+h_{n-1},x_n) - f(x_1,x_2,\cdots,x_n) \end{aligned} \]
\(K_1\)运用一元微分中值定理,得到
\[ K_1 = \frac{\partial f}{\partial x_n}(x_1+h_1,\cdots,x_{n-1}+h_{n-1},x_n+\theta h_n) h_n \]
其中\(\theta \in (0, 1)\),可以令
\[ K_1 = \frac{\partial f}{\partial x_n}(\boldsymbol{x}_0) h_n + r_1 \]
其中
\[ \begin{aligned} r_1 & = \left( \frac{\partial f}{\partial x_n}(x_1+h_1,\cdots,x_{n-1}+h_{n-1},x_n+\theta h_n) - \frac{\partial f}{\partial x_n}(\boldsymbol{x}_0) \right) h_n \\ & = \beta_n(\boldsymbol{h}) h_n \end{aligned} \]
\(\dfrac{\partial f}{\partial x_n}\)函数的连续性可知,当\(\Vert \boldsymbol{h} \Vert \to 0\)时,\(\beta_n(\boldsymbol{h}) \to 0\),从而
\[ K_1 = \frac{\partial f}{\partial x_n}(\boldsymbol{x}_0)h_n + \beta_n(\boldsymbol{h})h_n \]
\(K_2\)使用\(n-1\)维的归纳假设,可知
\[ K_2 = \sum_{i=1}^{n-1} \frac{\partial f}{\partial x_i} h_i + \sum_{i=1}^{n-1} \beta_i(\boldsymbol{h}) h_i \]
\(\Vert \boldsymbol{h} \Vert \to 0\)时,\(\beta_i(\boldsymbol{h}) \to 0 (i=1,2,\cdots,n-1)\),从而
\[ f(\boldsymbol{x}_0 + \boldsymbol{h}) - f(\boldsymbol{x}_0) = K_1+K_2 = \sum \limits_{i=1}^n \frac{\partial f}{\partial x_i} (\boldsymbol{x}_0) h_i + \sum_{i=1}^{n-1} \beta_i(\boldsymbol{h})h_i \]
其中\(\beta_i(\boldsymbol{h}) \to 0 (\Vert \boldsymbol{h} \Vert \to 0)(i=1,2,\cdots,n)\)。所以\(f\)\(\boldsymbol{x}_0\)处可微。即对\(n\)维定理也成立。

Q.E.D.

定理5

\(f\)\(\boldsymbol{x}_0\)处可微,则\(f\)\(\boldsymbol{x}_0\)处的任意方向\(\boldsymbol{u} = (u_1,u_2,\cdots,u_n)\)的方向导数都存在,且
\[ \frac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{x}_0) = \frac{\partial f}{\partial x_1}(\boldsymbol{x}_0) u_1 + \frac{\partial f}{\partial x_2}(\boldsymbol{x}_0) u_2 + \cdots + \frac{\partial f}{\partial x_n}(\boldsymbol{x}_0) u_n \]

证:由于\(f\)\(\boldsymbol{x}_0\)处可微,从而
\[ f(\boldsymbol{x}_0 + t \boldsymbol{u}) - f(\boldsymbol{x}_0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} (\boldsymbol{x}_0) tu_i + o(t) \]

\[ \frac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{x}_0) = \lim \limits_{t \to 0} \frac{f(\boldsymbol{x}_0+t \boldsymbol{u}) - f(\boldsymbol{x})}{t} = \sum_{i=1}^n \frac{\partial f}{\partial x_i} u_i \]

Q.E.D.