定义1:微分
设函数\(f\)在\((a,b)\)上有定义,且\(x_0 \in (a,b)\),如果存在一个常数\(\lambda\),使得
\[ f(x_0 + \Delta x) - f(x_0) = \lambda \Delta x + o(\Delta x) \quad (\Delta x \to 0) \]
则称函数\(f\)在点\(x_0\)处可微,\(\lambda \Delta x\)称为\(f\)在\(x_0\)处的微分,记作\(\mathrm{d}f(x_0)\)。如果\(f\)在\((a,b)\)上任意一点都可微,则称\(f\)在\((a,b)\)上可微。
定理1
函数\(f\)在点\(x_0\)处可微的充分必要条件是\(f\)在\(x_0\)处可导。
证:必要性。由可微的定义可知
\[
f(x_0 + \Delta x) - f(x_0) = \lambda \Delta x + o(\Delta x) \quad
(\Delta x \to 0)
\]
上式两边同时除以\(\Delta
x\),可得
\[
\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lambda + o(1) \quad
(\Delta x \to 0)
\]
从而得到
\[
\lambda = \lim \limits_{\Delta x \to 0} \frac{f(x_0 + \Delta x) -
f(x_0)}{\Delta x} = f^\prime(x_0)
\]
这就表明\(f\)在\(x_0\)处可导;
充分性。由可导的定义可知
\[
f^\prime(x_0) = \lim \limits_{\Delta x \to 0} \frac{f(x_0 + \Delta
x) - f(x_0)}{\Delta x}
\]
然后根据上面的证明反推,即可证。
从而对单变量函数来说,可导和可微是同一回事。且有
\[
\mathrm{d} f(x_0) = f^\prime(x_0) \Delta x
\]
Q.E.D.
定理2
(1)\(\mathrm{d} x = \Delta x\)
(2)\(\mathrm{d} f(x) = f^\prime(x) \mathrm{d}x\)
证:由于
\[
\mathrm{d} f(x) = f^\prime(x) \Delta x \tag 1
\]
从而当\(f(x) = x\)时,有\(f^\prime(x) = 1\),所以
\[
\mathrm{d} x = \Delta x \tag 2
\]
将(2)式代入(1)式即可得
\[
\mathrm{d} f(x) = f^\prime(x) \mathrm{d}x
\]
定义2:微商
函数\(f\)如果在区间\(I\)上可微,则称\(\frac{\mathrm{d}f(x)}{\mathrm{d}x}\)为函数\(f\)的微商,由于\(\frac{\mathrm{d}f(x)}{\mathrm{d}x} = f^\prime(x)\),所以微商也称为导数。
定理3:微分的四则运算
函数\(f,g\)在区间\(I\)上可微,则
(1)\(\mathrm{d} (f \pm g) = \mathrm{d} f + \mathrm{d} g\)
(2)\(\mathrm{d} (fg) = g \mathrm{d}f + f \mathrm{d} g\)
(3)\(\mathrm{d} \left(\dfrac{f}{g}\right) = \dfrac{g \mathrm{d}f - f \mathrm{d} g}{g^2}\)
证:利用微分与导数的关系易证。
定义3
设函数\(y=f(x)\)在区间\(I\)上可微,那么\(\mathrm{d} y = f^\prime(x) \mathrm{d}x\)仍然是\(x\)的函数,如果\(f^\prime(x)\)仍可微,则可计算\(\mathrm{d}y\)的微分,记\(\mathrm{d}^2 y = \mathrm{d} (\mathrm{d} y)\),可知
\[ \mathrm{d}^2 y = \mathrm{d} (\mathrm{d} y) = \mathrm{d} (f^\prime(x) \mathrm{d} x) = f^{\prime\prime}(x) \mathrm{d} x^2 \]
这里\(\mathrm{d} x^2 = (\mathrm{d} x)^2\),称\(\mathrm{d}^2y\)为\(y = f(x)\)的二次微分。如果\(f^{\prime\prime}(x)\)仍可微,则可定义三阶微分
\[ \mathrm{d}^3 y = f^{\prime\prime\prime}(x) \mathrm{d} x^3 \]
如果\(f\)在\(x\)处有\(n\)阶导数,那么有
\[ \mathrm{d}^n y = f^{(n)}(x) \mathrm{d} x^n \]
且有\(n\)阶导数的记号
\[ \frac{\mathrm{d}^n y}{\mathrm{d} x^n} = f^{(n)} (x) \]
定理4:复合函数的微分
设\(y=f(x)\)且\(x = \varphi(t)\),当\(t\)在\(\varphi\)的定义域内变化时,\(\varphi(t)\)的值也在\(f\)的定义域内。且函数\(f,\varphi\)都可微,则复合函数\(y = f\circ \varphi (t)\),也可微。
证:由于
\[
\mathrm{d} y = (f \circ \varphi)^\prime \mathrm{d}t = f^\prime(x)
\varphi^\prime(t) \mathrm{d} t
\]
又知\(\mathrm{d} x = \varphi(t)^\prime
\mathrm{d} t\),代入上式,可得
\[
\mathrm{d} y = f^\prime(x) \mathrm{d} x
\]
如果\(x\)是自变量,上式自然成立。也就是无论是对独立的自变量还是对中间变量上式都是正确的,这称为一阶微分形式的不变性。