0%

函数导数四:L’Hospital法则

定理1

设函数\(f,g\)\((a,b)\)上可导,并且\(g(x) \ne 0\)\(x \in (a,b)\)成立。又设
\[ \lim \limits_{x \to a^+} f(x) = \lim \limits_{x \to a^+} g(x) = 0 \]
如果极限
\[ \lim \limits_{x \to a^+} \frac{f^\prime(x)}{g^\prime(x)} \]
存在(或为\(\infty\)),那么便有
\[ \lim \limits_{x \to a^+} \frac{f(x)}{g(x)} = \lim \limits_{x \to a^+} \frac{f^\prime(x)}{g^\prime(x)} \]

证:补充定义\(f(a) = g(a) = 0\),从而\(f,g\)\([a,b)\)上连续,利用Cauchy中值定理,对\(x \in (a,b)\),有
\[ \frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f^\prime(\xi)}{g^\prime(\xi)} \]
这里\(a < \xi < x\),所以当\(x \to a^+\)时,有\(\xi \to a^+\),从而
\[ \lim\limits_{x \to a^+} \frac{f(x)}{g(x)} = \lim\limits_{\xi \to a^+} \frac{f^\prime(\xi)}{g^\prime(\xi)} = \lim\limits_{x \to a^+} \frac{f^\prime(x)}{g^\prime(x)} \]

Q.E.D.

定理2

设函数\(f,g\)在区间\((a,+\infty)\)上可导,且\(g(x) \ne 0\)\(x \in (a, +\infty)\)成立,并且
\[ \lim\limits_{x \to +\infty} f(x) = \lim\limits_{x \to +\infty} g(x) = 0 \]
那么当\(\lim \limits_{x \to +\infty} \dfrac{f^\prime(x)}{g^\prime(x)}\)存在(或为\(\infty\))时,有
\[ \lim \limits_{x \to +\infty} \frac{f(x)}{g(x)} = \lim \limits_{x \to +\infty} \frac{f^\prime(x)}{g^\prime(x)} \]

证:令\(x = \dfrac{1}{t}\),则当\(x \to +\infty\)相当于\(t \to 0^+\),这时,我们有
\[ \lim\limits_{t \to 0^+} f\left(\frac{1}{t}\right) = \lim\limits_{t \to 0^+} g\left(\frac{1}{t}\right) = 0 \]
由定理1可知
\[ \begin{aligned} \lim\limits_{x \to +\infty} \frac{f(x)}{g(x)} = \lim\limits_{t \to 0^+} \frac{f\left(\frac{1}{t}\right)}{g\left(\frac{1}{t}\right)} = \frac{f^\prime\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right)}{g^\prime\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right)} \\ = \lim\limits_{t \to 0^+} \frac{f^\prime\left(\frac{1}{t}\right)}{g^\prime\left(\frac{1}{t}\right)} = \lim\limits_{x \to +\infty} \frac{f^\prime(x)}{g^\prime(x)} \end{aligned} \]

Q.E.D.

定理3

设函数\(f,g\)\((a,b)\)上可导,\(g(x) \ne 0\),且
\[ \lim\limits_{x \to a^+} g(x) = \infty \]
如果极限\(\lim \limits_{x \to a^+} \frac{f^\prime(x)}{g^\prime(x)}\)存在(或为\(\infty\)),那么
\[ \lim \limits_{x \to a^+} \frac{f(x)}{g(x)} = \lim \limits_{x \to a^+} \frac{f^\prime(x)}{g^\prime(x)} \]

证:令
\[ l = \lim\limits_{x \to a^+} \frac{g^\prime(x)}{g^\prime(x)} \]
不妨设\(l\)为有限数,则对任意的\(\varepsilon > 0\),存在\(\delta > 0\),使得当\(x \in (a, a+\delta)\)时,有
\[ l - \varepsilon < \frac{f^\prime(x)}{g^\prime(x)} < l + \varepsilon \]
从而对\((x,c) \in (a, a+\delta)\),由Cauchy中值定理可知,必存在\(\xi \in (x,c)\)使得
\[ l - \varepsilon < \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f^\prime(\xi)}{g^\prime(\xi)} < l + \varepsilon \]
又因为
\[ \frac{f(x)-f(c)}{g(x) - g(c)} = \left( \frac{f(x)}{g(x)} - \frac{f(c)}{g(x)}\right) \left(1 - \frac{g(c)}{g(x)}\right)^{-1} \]
固定\(c\),对\(x \to a^+\)取上极限,得
\[ \limsup_{x \to a^+} \frac{f(x)}{g(x)} \le l + \varepsilon \]
再令\(\varepsilon \to 0\),得
\[ \limsup_{x \to a^+} \frac{f(x)}{g(x)} \le l \]
利用同样得方式,可得
\[ \liminf_{x \to a^+} \frac{f(x)}{g(x)} \ge l \]
从而有
\[ \lim\limits_{x \to a^+} \frac{f(x)}{g(x)} = l \]

\(l\)\(-\infty\)\(+\infty\)也可使用类似得方法证明。

Q.E.D.