0%

数学试题一:初中篇

几何题

\(1.\)\(\triangle ABC\)中,\(AB=AC\),点\(D\)在线段\(BC\)上,且\(\angle BAD = 20^\circ\),点\(E\)在线段\(AC\)上,且\(AE = AD\),求\(\angle CDE\)


\(2.\)\(\triangle ABC\)中,点\(D,E\)分别是\(AC,BC\)的中点,点\(F\)在线段\(AB\)上,且\(BF=\frac{1}{3}AB\)\(BD\)\(CF\)相交于点\(G\),连接\(EG\)
(1)证:\(EG \parallel AC\)
(2)求\(\displaystyle \frac{S_{\triangle BFG}}{S_{\triangle BEG}}\)

\(3.\)\(\triangle ABC\)中,\(\angle BAC\)的角平分线\(AD\)\(BC\)于点\(D\),点\(E\)\(BC\)的中点,过点\(E\)\(EG \parallel AD\)\(AB\)于点\(F\),交\(CA\)的延长线于点\(G\)。证:\(BF = CG\)

\(4.\)\(Rt\triangle ABC\)中,\(\angle ACB = 90^\circ\),点\(D\)\(AB\)上,且\(CD \perp AB\)\(AE\)平分\(\angle BAC\)\(CD\)于点\(K\),交\(BC\)于点\(E\)\(F\)\(BE\)上的点,且\(BF=CE\),证:\(FK \parallel AB\)

\(5.\) \(EFGH\)是正方形\(ABCD\)的内接四边形,其中点\(E,F,G,H\)分别在线段\(AB,BC,CD,DA\)中,\(\angle BEG,\angle CFH\)都是锐角,已知\(EG=3,FH=4\),四边形\(EFGH\)的面积为\(5\),求正方形\(ABCD\)的面积。

\(6.\) 平行四边形\(ABCD\)中,\(BC=2AB\)\(M\)\(AD\)的中点,点\(E\)\(AB\)上,且\(CE \perp AB\),求\(\angle DME : \angle AEM\)

\(7.\) 矩形\(ABCD\)中,\(AB=a,BC=b\),点\(E,F\)分别在\(AB,BC\)上,定义\(S_1=S_{\triangle DAE},S_2=S_{\triangle CDF},S_3=S_{\triangle BEF},S_4=S_{\triangle DEF}\),如果\(\displaystyle S_1=S_2=\frac{1}{2} (S_3 + S_4)\),求\(S_4\)(用\(a,b\)表示)。

\(8.\) 平行四边形\(ABCD\)中,\(M\)\(BC\)的中点,且\(AM=9,BD=12,AD=10\),求平行四边形\(ABCD\)的面积。

\(9.\) 平行四边形\(ABCD\)中,\(AB=5,AD=8\)\(\angle BAD,\angle ADC\)的角平分线分别交\(BC\)于点\(E,F\),求\(EF\)

\(10.\) \(\triangle ABC\)\(\bigodot O\)的内接三角形,且\(AC=BC\),点\(D\)\(\bigodot O\)上,延长\(DA\)至点\(E\),使\(CE=CD\)
(1)证:\(AE=BD\)
(2)若\(AC \perp BC\),证:\(AD+BD = \sqrt 2 CD\)

\(11.\) 在三角形\(ABC\)中,点\(O\)\(AC\)上的一个动点,过点\(O\)作直线\(MN \parallel BC\),设\(MN\)\(\triangle BCA\)的角平分线于点\(E\),交\(\triangle BCA\)的外角平行线于点\(F\)
(1)证:\(OE=OF\)
(2)点\(O\)在何处时,四边形\(AECF\)是矩形?
(3)若\(AC\)上存在点\(O\)使四边形\(AECF\)是正方形,且$ = \(,求\)B$的大小。

\(12.\) 三角形\(ABC\)中,\(AB=5,AC=3\)\(D\)\(BC\)的中点,\(AD=2\),求\(BC\)的长。

\(13.\) \(Rt\triangle ABC\)中,\(\angle C = 90^\circ\),点\(M\)\(BC\)的中点,点\(D\)\(AB\)上,\(MD \perp AB\),证:\(AC^2 + BD^2 = AD^2\)

\(14.\)\(\triangle ABC\)中,\(AB=AC\),点\(P\)\(BC\)上一点,证:\(PA^2 + PB\cdot PC = AB^2\)

\(15.\)\(P\)\(\triangle ABC\)内一点,\(PD \perp AB\)于点\(D\)\(PE \perp BC\)于点\(E\)\(PF \perp AC\)于点\(F\),证:\(AD^2 + BE^2 + CF^2 = AF^2 + BD^2 + CE^2\)

\(16.\)\(\triangle ABC\)中,\(BD \perp AC\)于点\(D\)\(CE \perp AB\)于点\(E\),点\(F\)\(BD\)上,且\(BF=AC\),点\(G\)\(CE\)的延长线上,且\(CG = AB\),证:\(AG \perp AF\)

\(17.\) 在等腰\(Rt \triangle ABC\)中,\(\angle A = 90^\circ\)\(\angle ABC\)的角平分线\(BD\)\(AC\)于点\(D\),点\(E\)\(BC\)上,且\(\angle CDE = 45^\circ\),连接\(AE\),证:\(AE \perp BD\)

\(18.\)\(E\)为平行四边形\(ABCD\)的边\(BC\)上一动点,\(DE\)交直线\(AB\)于点\(F\),连接\(AE,CF\)
(1)\(\triangle ABE\)\(\triangle CEF\)的面积有何关系?
(2)若\(E\)\(CB\)的延长线上,(1)的结论依然成立吗?

\(19.\) \(\triangle ABC\)中,\(AB=5,AC=11\)\(\triangle BAC\)的角平分线\(AD\)\(BC\)于点\(D\),点\(E\)\(BC\)的中点,过点\(E\)\(EF \parallel AD\)\(AC\)于点\(F\),求\(CF\)的长。

\(20.\)\(\triangle ABC\)中,点\(E\)\(AB\)上,\(AE:EB=1:3\),点\(D\)\(BC\)上,\(BD:DC=2:1\)\(AD\)\(CE\)相交于点\(F\),则\(\displaystyle \frac{EF}{FC} + \frac{AF}{FD}\)的值为?

\(21.\)\(\triangle ABC\)中,\(AB > AC\)\(AD\)平分\(\angle BAC\)且交\(BC\)于点\(D\)\(EF \perp AD\)\(AB\)于点\(E\),交\(AC\)于点\(F\),交\(AD\)于点\(G\),交\(BC\)的延长线于点\(M\),证:\(\displaystyle \angle M = \frac{1}{2} (\angle ACB - \angle B)\)

\(22.\)\(\triangle ABC\)中,\(AD\)\(\angle BAC\)的角平分线且交\(BC\)于点\(D\),若\(AB + BD = 25, AC - CD = 4\),则\(AD\)为多少?

\(23.\) 如图,在\(\triangle ABC\)中,\(DE \parallel FG \parallel BC\)\(GI \parallel EF \parallel AB\),若\(S_{\triangle ADE} = 20, S_{\triangle EFG} = 45, S_{\triangle GIC} = 80\),则\(S_{\triangle ABC}\)是多少?

\(24.\) 在梯形\(ABCD\)中,\(AD \parallel BC\)\(AC \perp BD\),已知\(AD:BC=3:4\),则\(BD:AC\)的值为?

\(25.\) 如图,六边形\(ABCDEF\)\(6\)个全等的正方形组成,正方形边长为\(1\),过点\(A\)的一条直线分别与\(ED,CD\)交于\(M,N\),若这个六边形在\(MN\)两侧的部分面积相等,则\(EM\)的长度是?

\(26.\) 正方形\(ABCD\)的边\(AB=12\),点\(E\)\(CD\)上,且\(DE=5\),点\(M\)\(AE\)上,且\(EM=5\),过点\(M\)的线段\(PQ \perp AE\)分别交\(AD,BC\)于点\(P,Q\),则\(PM:MQ\)为?

\(27.\) \(\triangle ABC\)中,\(AD\)\(BC\)边上的中线,点\(F\)\(AD\)上,且\(AF:FD=1:5\),连接\(CF\)并延交\(AB\)于点\(E\),则\(AE:EB\)为?

\(28.\) 在梯形\(ABCD\)中,\(AD \parallel BC\)\(EH \parallel BC\)分别交\(AB,BD,AC,CD\)于点\(E,F,G,H\),且\(BC=a,AD=b (a > b)\)\(AE:EB=3:2\),则\(FG\)为?

\(29.\)\(P,M,N\)分别是\(\triangle ABC\)的边\(BC,CA,AB\)上的点,且\(AP,BM,CN\)三线共点,证\(\displaystyle \frac{AN}{NB} \cdot \frac{BP}{CP} = \frac{AM}{MC}\)

\(30.\) 已知\(M,N\)\(\triangle ABC\)的边\(BC\)上的两点,且满足\(BM=MN=NC\),一条平行于\(AC\)的直线分别交\(AB,AM\)\(AN\)的延长线于点\(D,E,F\),证\(EF=3DE\)

\(31.\) 已知\(\triangle ABC\)\(\triangle A_1B_1C_1\)均为正三角形,\(BC\)\(B_1C_1\)的中点均为\(D\),证\(AA_1 \perp CC_1\)

\(32.\) 如图,在\(\triangle ABC\)内部选取一点\(P\),过点\(P\)作三条分别与\(\triangle ABC\)的三边平行的直线,这样所得的三角形\(t_1,t_2,t_3\)的面积分别为\(4, 9, 49\),求\(S_{\triangle ABC}\)

\(33.\)\(E\)是四边形\(ABCD\)的对角线\(BD\)上一点,且\(\angle BAC=\angle BDC=\angle DAE\)
(1)证:\(BE \cdot AD = CD \cdot AE\)
(2)猜想\(\displaystyle \frac{BC}{DE}\)可能等于哪两条线段之比?注:只需写出一组比?并证明你的猜想。

\(34.\)\(\triangle ABC\)中,\(\angle BAC = 120^\circ\)\(AD \perp BC\)并交\(BC\)于点\(D\),且\(AB+BD=DC\),则\(\angle C=\)

\(35.\) \(BM\)\(CM\)分别是\(\triangle ABC\)的内角\(ABC\)和外角\(ACD\)的角平分线,\(ME \parallel BC\)\(AB\)于点\(E\),交\(AC\)于点\(F\),证\(EF = BE - CF\)

\(36.\) 在等腰\(\triangle ABC\)中,\(AB=AC\),点\(D,E\)在线段\(BC\)上,且\(BD=DE=EC\),证\(\angle BAD < \angle DAE\)

\(37.\) 如图,已知\(BE\)\(\angle ABD\)的角平分线,\(CF\)\(\angle ACD\)的角平分线,\(BE\)\(CF\)交于点\(G\),若\(\angle BDC=140^\circ,\angle BGC=110^\circ\),则\(\angle A=\)

\(38.\) 已知\(\angle xOy = 90^\circ\),点\(A,B\)分别在射线\(Ox,Oy\)上移动,\(BE\)\(\angle ABy\)的角平分线,\(BE\)的反向延长线与\(\angle OAB\)的角平分线交于点\(C\)。试问\(\angle ACB\)的大小是否变化,如果保持不变,请证明;如果变化,请求出变化范围。

\(39.\)\(D,F\)分别是\(\triangle ABC\)的边\(AB,AC\)上的点,且\(AD:DB=CF:FA=2:3\)\(DF\)延长线交\(BC\)的延长线于点\(E\),则\(EF:FD=\)

\(40.\) 已知矩形\(ABCD\)的边长\(AB=2,BC=3\),点\(P\)\(AD\)边上的一动点,\(Q\)\(BC\)边上的任意一点,连接\(AQ,DQ\),过点\(P\)\(PE \parallel DQ\)\(AQ\)于点\(E\),作\(PF \parallel AQ\)\(DQ\)于点\(F\)
(1)设\(AP\)的长为\(x\),试求\(S_{\triangle PEF}\)关于\(x\)的函数式,并求当\(P\)在何处时,\(S_{\triangle PEF}\)取最大值,最大值是多少?
(2)当\(Q\)在何处时,\(\triangle ADQ\)的周长最小?

\(41.\) 在矩形\(ABCD\)中,点\(E\)\(AD\)的中点,点\(F\)\(AB\)上且\(EF \perp EC\),连接\(FC\)\((AB > AE)\)
(1)\(\triangle AEF \sim \triangle ECF\)成立吗?若成立,请证明;否则,请说明理由。
(2)设\(\displaystyle \frac{AB}{BC}=k\),是否存在这样的\(k\)使得\(\triangle AEF \sim \triangle BCF\)?若存在,证明之并求出\(k\);否则,请说明理由。

\(42.\)\(M\)\(\triangle ABC\)的边\(BC\)的中点,截线\(PQ\)分别交\(AB,AM,AC\)于点\(P,N,Q\),求证\(\displaystyle \frac{AB}{AP} + \frac{AC}{AQ} = 2\frac{AM}{AN}\)

\(43.\)\(M\)为正方形\(ABCD\)的边\(AB\)上一点,\(BP \perp CM\)于点\(P\)\(N\)\(BC\)上一点,且\(BM=BN\),求证\(PD \perp PN\)

\(44.\) 四边形\(ABCD\)中,\(AC,BD\)相交于点\(O\),过点\(O\)\(AB\)的平行线分别交\(AD,BC\)以及\(DC\)的延长线于点\(E,F,G\),求证\(GO^2 = GE\cdot GF\)

$45. $ 在平行四边形\(ABCD\)中,\(O_1,O_2,O_3\)\(BD\)上三点,且\(BO_1=O_1O_2=O_2O_3=O_3D\),连接\(AO_1\)并延长交\(BC\)于点\(E\),连接\(EO_3\)并延长交\(AD\)于点\(F\),则\(AD:FD=?\)

$46. $ 在等腰直角三角形\(BAC\)中,\(\angle A = 90^\circ\), \(AB=1\)\(E\)\(AC\)的中点,点\(F\)\(BC\)上,且\(EF \perp BE\),求\(\triangle CEF\)的面积。

$47. $ 在梯形\(ABCD\)中,\(AD \parallel BC\)\(AB=DC=3\),点\(P\)\(BC\)上一点,\(PE \parallel AB\)\(AC\)与点\(E\)\(PF \parallel CD\)\(BD\)于点\(F\),令\(m=PE,n=PF,x=m+n\),那么当\(P\)\(BC\)上移动时,\(x\)的值是否变化,如果变化,求出\(x\)的取值范围,否则,求出\(x\)的值,并说明理由。

$48. $ 设点\(P\)是等边三角形\(ABC\)的边\(BC\)上任一点,连接\(AP\)并作\(AP\)的中垂线交\(AB\)\(AC\)分别于点\(M,N\),求证\(BP\cdot PC=BM\cdot CN\)

$49. $ 正方形\(GEFD\)内接于\(\triangle ABC\),若\(\angle C=90^\circ\)\(AC=b,AB=c,BC=a\),则\(AD:DE:EB=?\)

$50. $ \(\triangle ABC\)中,\(E,D\)是边\(BC\)上两点,若\(AD=AE\)\(\angle BAD = \angle C\)\(AC=6\)\(CE=4\),则\(BE=?\)

$51. $ \(\triangle ABC\)中,\(F\)\(AC\)的中点,\(DE\)\(BC\)的三等分点,\(BF\)分别交\(AD,AE\)于点\(G,H\),则\(BG:GH:HF=?\)

$52. $ \(\triangle ABC\)中,点\(D,E,F\)分别在边\(AB,BC,CA\)上,已知\(S_{\triangle ABC} = 18, AD=4, BD=5, S_{\triangle ABE}=S_{DBEF}\),则\(S_{\triangle ABE}=?\)

$53. $ 在四边形\(ABCD\)中,\(AB=CD\),但不平行,点\(M,N\)分别是\(AD,BC\)的中点,\(NM\)的延长线与\(BA,CD\)的延长线分别交于点\(P,Q\),求证\(\angle APM = \angle DQM\)

$54. $ 在等腰\(\triangle ABC\)中,\(AB=AC, AM \parallel BC\),且\(\displaystyle AM=\frac{1}{2}AC\),点\(D\)\(AB\)上,\(\displaystyle AD=\frac{1}{4}AB\),延长\(MD\)\(N\),使得\(DM=DN\),连接\(AN,BN\),证明\(AN \perp BN\)

$55. $ 直角\(\triangle ABC\)中,\(\angle C = 90^\circ\),作\(\displaystyle BN \perp BC, BN=AN, BD=\frac{1}{4}BA\),连接\(ND\)至点\(M\),使得\(MD=ND\)
(1)证明\(BM \perp AB\)
(2)\(M\)点于\(BC\)的垂直平分线有何位置关系,为什么?

$56. $ 在正方形\(ABCD\)中,点\(E\)\(CB\)的延长线上,点\(F\)\(BA\)的延长线上,且\(AF=CE\),点\(P\)\(\triangle EFB\)\(\angle FEB, \angle FBE\)两个外角平分线的交点,证明\(DP=DF\)

$57. $ 在平面直角坐标系中,抛物线\(y=ax^2+2ax-b\)\(x\)轴交于\(A,B\)两点,与\(y\)轴的正半轴交于\(C\)点,且\(A(-4,0), OC=2OB\)
(1)求\(a,b\)的值;
(2)点\(T\)为其顶点,\(L\)为抛物线上一动点,且\(\displaystyle MN=\frac{2}{3}LN\)(点\(M,N,L\)按逆时针顺序),当点\(L\)在抛物线上运动时,直线\(AM,TL\)是否存在某种未知关系,若存在,请证明;若不存在,请说明理由。

$58. $ 在菱形\(ABCD\)与菱形\(BEFG\)中,且\(\angle ABC=\angle BEF=60^o\)\(A,B,E\)在同一条直线上,
(1)点\(P\)是线段\(DF\)的中点,连接\(PG,PC\),探究\(PG\)\(PC\)的位置和数量关系?\(\displaystyle \frac{PG}{PC}\)的值;
(2)如果将\(BEFG\)绕点\(B\)顺时针旋转,使\(BF\)与菱形\(ABCD\)\(AB\)在同一条直线上,原条件不变,则(1)中的结论是否依然成立?为什么?

$59. $ 如果,直角梯形\(ABCD\)中,\(AB \parallel CD, \angle A = 90^o, CD=3, AD=4, \tan B = 2\),过点\(C\)\(CH \perp AB\),点\(P\)为线段\(AD\)上一动点,直线\(PM \parallel AB\)分别交\(BC,CH\)于点\(M,Q\),以\(PM\)为斜边向右作等腰直角三角形\(PMN\),直线\(MN\)\(AB\)与点\(E\),直线\(PN\)\(AB\)于点\(F\),设\(PD\)的长为\(x\)\(EF\)的长为\(y\)
(1)求\(PM\)的长;
(2)求\(y\)\(x\)的函数关系及自变量\(x\)的取值范围;
(3)当点\(E\)在线段\(AH\)上时,求\(x\)的取值范围。

$60. $ 点\(A,B\)分别是两条平行线\(m,n\)上的任意两点,在直线\(n\)上找一点\(C\),使得\(BC=kAB\),连接\(AC\),在线段\(AC\)上任取一点\(E\),作\(\angle BEF = \angle ABC\)\(EF\)交直线\(m\)于点\(F\)
(1)当\(k=1\)时,探究线段\(EF\)\(EB\)的关系,并加以说明;
(2)若\(\angle ABC=90^\circ, k \ne 1\),探究线段\(EF\)\(EB\)的关系。

$61. $ 如图,\(E\)是正方形\(ABCD\)的边\(BC\)上一点,\(AF\)平分\(\angle EAD\)\(CD\)于点\(F\),求证\(AE = BE + DF\)

$62. $ 矩形\(ABCD\)中,\(AD = a, AB = b\),要使\(BC\)边上至少存在一点\(P\),使\(\triangle ABP, \triangle APD, \triangle CDP\)两两相似,则\(\displaystyle \frac{a}{b}\)的取值范围是?

$63. $ 如图,\(AM\)\(\angle BAD\)的平分线,\(CM\)\(\angle BCD\)的平分线,求证\(\displaystyle \angle M = \frac{1}{2} (\angle B + \angle D)\)

$64. $ 如图,\(ABCD\)为矩形,\(CD\)的延长线上有一点\(E\),连接\(BE\)\(BE\)上有一点\(G\),有\(BD = DG, DG = GE\),求证\(\angle DBA = 3 \angle EBA\)

$65. $ 在平行四边形\(ABCD\)中,\(E\)\(CD\)上一点,\(DE:EC = 2:3\),连接\(AE,BE,BD\),且\(AE,BD\)交于点\(F\),则$S_{EDF}: S_{EBF}: S_{ABF} = $?

$66. $ 过\(\triangle ABC\)内任一点\(P\),作\(DE \parallel BC, HK \parallel AB, GF \parallel AC\),则\(\displaystyle \frac{DE}{BC} + \frac{FG}{AC} + \frac{KH}{AB}=\)

$67. $ \(\triangle ABC\)中,\(\angle ABC = 45^\circ\)\(AD\)\(\angle BAC\)的平分线,\(EF\)垂直平分\(AD\)\(BC\)延长线于\(F\),则\(\angle CAF=\)

$68. $ 在锐角三角形中,三个内角度数都是质数,则\(3\)个内角大小为?

$69. $ 已知四边形\(ABCD\)中,\(\angle ADC = \angle ABC = 90^\circ\)\(M,N\)分别是\(AC,BD\)的中点,证明\(MN \perp BD\)

$70. $ 三角形\(ABC\)中,若\(\angle A\)的外角平分线与三角形的外接圆交于点\(D\),证明\(BD=CD\)

$71. $ 若\(a,b,c\)表示\(\triangle ABC\)的三边长,\(m>0\),证明\(\displaystyle \frac{a}{a+m} + \frac{b}{b+m} > \frac{c}{c+m}\)

$72. $ 已知\(BE,CF\)分别为\(\triangle ABC\)的边\(AC,AB\)上的高,\(G\)\(EF\)的中点,\(H\)\(BC\)的中点,求证\(HG \perp EF\)

$73. $ 证明:等腰三角形底边延长线上一点到两腰距离之差等于一腰上的高。

代数题

$1. $ 当关于\(x\)的方程\(rx^2 + (r+2)^2x + r - 1 = 0\)有且仅有整数根时,求\(r\)的值。

$2. $ 已知\(\displaystyle \frac{1}{4}(b-c)^2 = (a-b)(c-a)\),且\(a \ne 0\),则\(\displaystyle \frac{b+c}{a}=\)

$3. $ 已知\(x + y + z=0\),则\(\displaystyle \frac{1}{y^2+z^2-x^2} + \frac{1}{z^2+x^2-y^2} + \frac{1}{x^2+y^2-z^2}=\)

$4. $ 已知\(\displaystyle \frac{x}{m} + \frac{y}{n} + \frac{z}{p} = 1\)\(\displaystyle \frac{m}{x} + \frac{n}{y} + \frac{p}{z} = 0\),则\(\displaystyle \frac{x^2}{m^2} + \frac{y^2}{n^2} + \frac{z^2}{p^2}=\)

$5. $ 已知\(f(x) = ax^2 + bx + c (a \ne 0)\)\(a,b,c\)都为整数,\(f(0),f(1)\)都为奇数,求证:\(f(x)=0\)无整实根。

$6. $ 已知\(x,y,z\)为互不相等的实数,且\(\displaystyle x + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x}\),证明\(x^2y^2z^2 = 1\)