0%

函数导数二:初等函数的导数

本章介绍常见初等函数的导函数及其求法。

常值函数

函数\(f = c\)为常值函数,证:\(f^\prime = 0\)

证:由于
\[ f^\prime(x) = \frac{f(x+h) - f(x)}{h} = \frac{c-c}{h} = 0 \]

Q.E.D.

指数函数

函数\(f(x) = x^\alpha (x > 0, \alpha \in \mathbb{R})\),证:\(f^\prime(x) = \alpha x^{\alpha - 1}\)

证:由于
\[ f^\prime(x) = \lim\limits_{h \to 0} \frac{(x+h)^\alpha - x^\alpha}{h} = x^{\alpha-1}\lim\limits_{h \to 0} \frac{(1 + h/x)^{\alpha} - 1}{h/x} \]

\[ \lim\limits_{t \to 0} \frac{(1+t)^\alpha - 1}{t} = \lim\limits_{t \to 0} \frac{e^{\alpha \ln(1+t)} - 1}{\alpha \ln (1+t)} \frac{\alpha \ln (1+t)}{t} \]
由于\(\ln(1+x) \sim x, e^x-1 \sim x \quad (x \to 0)\),从而
\[ \lim\limits_{t \to 0} \frac{(1+t)^\alpha - 1}{t} = \alpha \]
所以
\[ f^\prime(x) = \alpha x^{\alpha - 1} \]

Q.E.D.

正弦函数

函数\(f(x) = \sin x\),证\(f^\prime(x) = \cos x\)

证:由于
\[ f^\prime(x) = \lim\limits_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim\limits_{h \to 0} \frac{\cos (x+h/2) \sin (h/2)}{h/2} = \cos x \]

Q.E.D.

余弦函数

函数\(f(x) = \cos x\),证\(f^\prime(x) = -\sin x\)

证:由于
\[ f^\prime(x) = \lim \limits_{h \to 0} \frac{\cos (x+h) - \cos x}{h} = \lim\limits_{h \to 0} \frac{-\sin(x+h)\sin (h/2)}{h/2} = -\sin x \]

Q.E.D.

正切函数

函数\(f(x) = \tan x\),证\(f^\prime(x) = \sec^2x\)

证:由于
\[ (\tan x)^\prime = \begin{aligned} \left( \frac{\sin x}{\cos x} \right)\end{aligned} ^\prime = \frac{(\sin x)^\prime \cos x - \sin x (\cos x)^\prime}{\cos^2x} = \frac{1}{\cos^2 x} = \sec^2x \]

Q.E.D.

余切函数

函数\(f(x) = \cot x\),证\(f^\prime(x) = -\csc^2x\)

证:由于
\[ (\tan x)^\prime = \begin{aligned} \left( \frac{\cos x}{\sin x} \right)\end{aligned} ^\prime = \frac{(\cos x)^\prime \sin x - \cos x (\sin x)^\prime}{\sin^2x} = - \frac{1}{\cos^2 x} = -\csc^2x \]

Q.E.D.

反正弦函数

函数\(f(x) = \arcsin x\),证\(f^\prime(x) = \frac{1}{\sqrt{1-x^2}}\)

证:函数\(f(x)\)的反函数为\(x = \sin y\),从而
\[ f^\prime(x) = \frac{1}{(\sin y)^\prime} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}} \]

Q.E.D.

反余弦函数

函数\(f(x) = \arccos x\),证\(f^\prime(x) = -\frac{1}{\sqrt{1-x^2}}\)

证:函数\(f(x)\)的反函数为\(x = \cos y\),从而
\[ f^\prime(x) = \frac{1}{(\cos y)^\prime} = \frac{1}{-\sin y} = -\frac{1}{\sqrt{1-x^2}} \]

Q.E.D.

反正切函数

函数\(f(x) = \arctan x\),证\(f^\prime(x) = \frac{1}{1+x^2}\)

证:函数\(f(x)\)的反函数为\(x = \tan y\),从而
\[ f^\prime(x) = \frac{1}{(\tan y)^\prime} = {\cos^2 y} = \frac{1}{1+\tan^2y} = \frac{1}{1+x^2} \]

Q.E.D.

反余切函数

函数\(f(x) = \mathrm{arccot} x\),证\(f^\prime(x) = -\frac{1}{1+x^2}\)

证:函数\(f(x)\)的反函数为\(x = \cot y\),从而
\[ f^\prime(x) = \frac{1}{(\cot y)^\prime} = -{\sin^2 y} = -\frac{1}{1+\cot^2y} = -\frac{1}{1+x^2} \]

Q.E.D.

幂函数

函数\(f(x) = a^x (a>0)\),证\(f^\prime(x) = a^x \ln a\)

证:由于
\[ f^\prime(x) = \lim\limits_{h \to 0} \frac{a^{x+h} - a^x}{h} = a^x \lim\limits_{h \to 0} \frac{a^{h} - 1}{h} = a^x \ln a \]
特别地,当\(a= e\)时,有\((e^x)^\prime = e^x\)

Q.E.D.

对数函数

函数\(f(x) = \log_a x \quad (a > 0)\),证\(f^\prime(x) = \frac{1}{x \ln a}\)

证:由于\(f(x)\)的反函数为\(x = a^y\),所以
\[ f^\prime(x) = \frac{1}{(a^y)^\prime} = \frac{1}{a^y \ln a} = \frac{1}{x \ln a} \]
特别地,当\(a=e\)时,有\((\ln x)^\prime = \frac{1}{x}\)

Q.E.D.