定义1:导数
设函数\(f\)在\(x_0\)的近旁处有定义,如果极限
\[ \lim \limits_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h} \]
存在且有限,则称这个极限值为\(f\)在点\(x_0\)的导数,记作\(f^{\prime}(x_0)\),并称函数\(f\)在点\(x_0\)处可导。
定义2:单边导数
设函数\(f\)在点\(x_0\)的右边\([x_0,x_0+r)\)上有定义,其中\(r>0\),若极限
\[ \lim \limits_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \]
存在且有限,则称此极限为函数\(f\)在点\(x_0\)的右导数,记作\(f_+^{\prime}(x_0)\)。
类似地,设函数\(f\)在点\(x_0\)的右边\((x_0-r,x_0]\)上有定义,其中\(r>0\),若极限
\[ \lim \limits_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} \]
存在且有限,则称此极限为函数\(f\)在点\(x_0\)的左导数,记作\(f_-^{\prime}(x_0)\)。
定理1
函数\(f\)在点\(x_0\)处可导的充分必要条件是\(f\)在\(x_0\)处的左、右导数存在且相等,即\(f^\prime(x_0) = f_-^\prime(x_0) = f_+^\prime(x_0)\)。
Q.E.D.
定理2
若函数\(f\)在点\(x_0\)处可导,则\(f\)必在\(x_0\)处连续。
证:记\(f\)在\(x_0\)处的导数为\(f^\prime(x_0)\),于是有
\[
\lim \limits_{x \to x_0} (f(x) - f(x_0)) = \lim \limits_{x \to x_0}
\frac{f(x) - f(x_0)}{x-x_0} \cdot (x-x_0)
\]
上式中令\(x-x_0 = h\),可得
\[
\lim \limits_{x \to x_0} (f(x) - f(x_0)) = \lim \limits_{h \to 0}
\frac{f(x_0+h) - f(x_0)}{h} \cdot h = f^\prime(x_0) \cdot 0 = 0
\]
Q.E.D.
定义3
如果函数\(f\)在开区间\((a,b)\)中的每一点可导,则称函数\(f\)在\((a,b)\)上可导;如果函数\(f\)在\((a,b)\)上可导,且在点\(a\)处有右导数,在点\(b\)处有左导数,则称函数\(f\)在闭区间\([a,b]\)上可导。类似地,可以定义函数\(f\)在\([a,b)\)与\((a,b]\)上可导。
定理3:求导的四则运算
设函数\(f\)和\(g\)在点\(x\)处可导,则\(f \pm g,fg\)也在\(x\)处可导,如果\(g(x)\ne 0\),那么函数\(f/g\)也在\(x_0\)处可导。精确地说,我们有以下公式:
(1)\((f \pm g)^\prime (x) = f^\prime(x) \pm g^\prime(x)\)
(2)\((fg)^\prime (x) = f^\prime(x)g(x) + f(x)g^\prime(x)\)
(3)\(\displaystyle (\frac{f}{g})^\prime(x) = \frac{f^\prime(x)g(x) - f(x)g^\prime(x)}{g^2(x)}\)
证:(1)有
\[
\frac{(f \pm g) (x + h) - (f \pm g) (x)}{h} = \frac{f(x+h) -
f(x)}{h} \pm \frac{g(x+h) - g(x)}{h}
\]
令\(h \to 0\),从而得到(1)式;
(2) 有
\[
\begin{aligned}
\frac{f(x+h)g(x+h) - f(x)g(x)}{h} & = \frac{f(x+h)g(x+h) -
f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h} \\
& = \frac{f(x+h) - f(x)}{h} \cdot g(x+h) + \frac{g(x+h) -
g(x)}{h} \cdot f(x)
\end{aligned}
\]
上式中令\(h \to
0\),即可得到(2)式;
(3)有
\[
\begin{aligned}
\frac{1}{h}\left(\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}
\right) & = \frac{1}{h}\left( \frac{f(x+h)g(x) -
f(x)g(x+h)}{g(x+h)g(x)} \right) \\
& = \frac{1}{g(x+h)g(x)} \left( \frac{f(x+h) - f(x)}{h}g(x)
- \frac{g(x+h) - g(x)}{h} f(x) \right)
\end{aligned}
\]
令\(h \to 0\),即可得(3)式。
Q.E.D.
定理4:链式法则
设函数\(\varphi\)在点\(t_0\)处可导,函数\(f\)在点\(x_0=\varphi(t_0)\)处可导,那么复合函数\(f\circ \varphi\)在点\(t_0\)处可导,且
\[ (f \circ g)^\prime (t_0) = f^\prime(\varphi(t_0))\varphi^\prime(t_0) \]
证:记函数
\[
g(x) = \left\{
\begin{aligned}
& \frac{f(x) - f(x_0)}{x - x_0} \quad &x \ne
x_0\\
& f^\prime(x_0) \quad & x = x_0
\end{aligned}
\right.
\]
可知
\[
\lim \limits_{x \to x_0} g(x) = \lim \limits_{x \to x_0} \frac{f(x)
- f(x_0)}{x - x_0} = f^\prime(x_0) = g(x_0)
\]
所以\(g(x)\)在\(x_0\)处连续。
(1)当\(\varphi(t) \ne
\varphi(t_0)\)时,有
\[
\frac{f(\varphi(t)) - f(\varphi(t_0))}{t-t_0} = \frac{f(\varphi(t))
- f(\varphi(t_0))}{\varphi(t)-\varphi(t_0)} \cdot \frac{\varphi(t) -
\varphi(t_0)}{t - t_0} = g(\varphi(t)) \cdot \frac{\varphi(t) -
\varphi(t_0)}{t - t_0}
\]
(2)当\(\varphi(t) =
\varphi(t_0)\)时,有
\[
0 = \frac{f(\varphi(t)) - f(\varphi(t_0))}{t-t_0} = g(\varphi(t))
\cdot \frac{\varphi(t) - \varphi(t_0)}{t - t_0} = 0
\]
从而有
\[
\frac{f(\varphi(t)) - f(\varphi(t_0))}{t-t_0} = g(\varphi(t)) \cdot
\frac{\varphi(t) - \varphi(t_0)}{t - t_0} \tag 1
\]
又由于
\[
\lim \limits_{t \to t_0} g(\varphi(t)) = g(\varphi(t_0)) = g(x_0) =
f^\prime(x_0)
\]
再令(1)式中\(t \to t_0\),可得
\[
(f \circ g)^\prime (t) = f^\prime(x_0) \varphi^\prime(t_0) =
f^\prime(\varphi(t_0))\varphi^\prime(t_0)
\]
Q.E.D.
定理5:反函数的求导
设\(y = f(x)\)在包含\(x_0\)的区间\(I\)上连续且严格单调。如果它在\(x_0\)处可导,且\(f^\prime(x_0) \ne 0\),那么它的反函数\(x = f^{-1}(y)\)在\(y_0 = f(x_0)\)处可导,且
\[ (f^{-1})^\prime(y_0) = \frac{1}{f^\prime(x_0)} \]
证:由于
\[
\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{x - x_0}{f(x) -
f(x_0)} = \left(\frac{f(x) - f(x_0)}{x - x_0}\right)^{-1}
\]
又因为\(f\)单调连续,所以当\(y \to y_0\)时,有\(x \to x_0\),令上式中\(y \to y_0\),可得
\[
(f^{-1})^\prime(y_0) = (f^\prime(x_0))^{-1}
\]
Q.E.D.
定义4:导函数与\(n\)阶导函数
设函数\(f\)在区间\(I\)上可导,那么\(f^\prime(x)(x \in I)\)在\(I\)上定义了一个函数\(f^\prime\),称之为\(f\)的导函数。如果\(f^\prime\)在\(I\)上可导,那么\((f^\prime)^\prime\)称为\(f\)的二阶导函数,记作\(f^{\prime\prime}\)。由归纳可知,对任何正整数\(n\),可以定义\(f\)的\(n\)阶导函数\(f^{(n)}\)。
定理6:Leibniz
设函数\(f\)与\(g\)在区间\(I\)上都有\(n\)阶导数,那么乘积\(fg\)在区间\(I\)上也有\(n\)阶导数,并且
\[ (fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}g^{(k)} \]
这里\(f^{(0)} = f, g^{(0)} = g\),其中组合系数
\[ \binom{n}{k} = \frac{n!}{(n-k)!k!} \quad (k = 0,1,2,\cdots) \]
证:我们对\(n\)进行归纳。当\(n = 1\)时,命题显然成立。现假设\(m \ge 1\)时,有
\[
(fg)^{(m)} = \sum_{k=0}^m \binom{m}{k} f^{(m-k)}g^{(k)}
\]
这时对上式两边求导,得
\[
\begin{aligned}
(fg)^{(m+1)} & = \sum_{k=0}^m \binom{m}{k}
(f^{(m-k)}g^{(k)})^\prime \\
& = \sum_{k=0}^m \binom{m}{k} (f^{(m-k+1)}g^{(k)} +
f^{(m-k)}g^{(k+1)}) \\
& = \binom{m}{0}f^{(m+1)}g^{(0)} + \sum_{k=1}^m
\left(\binom{m}{k} +\binom{m}{k-1}\right) f^{(m-k+1)}g^{(k)} +
\binom{m}{m}f^{(m+1)}g^{(0)}
\end{aligned}
\]
而
\[
\begin{aligned}
\binom{m}{k} + \binom{m}{k-1} &= \frac{m!}{(m-k)!k!} +
\frac{m!}{(m-k+1)!(k-1)!} \\
& = \frac{m!(m-k+1+k)}{(m-k+1)!k!} =
\frac{(m+1)!}{(m-k+1)!k!} = \binom{m+1}{k}
\end{aligned}
\]
且\(\binom{m}{0} =
\binom{m+1}{0},\binom{m}{m} = \binom{m+1}{m+1}\),从而
\[
(fg)^{(m+1)} = \sum_{k=0}^{m+1} \binom{m+1}{k} f^{(m+1-k)}g^{(k)}
\]
即对\(m+1\)命题也成立。
Q.E.D.