0%

函数极限二:其它类型的函数极限

定义1:自变量趋于\(+\infty\)的极限

若对\(\forall \varepsilon>0, \exists A > 0\),使得当\(x > A\)时,有\(|f(x) - l| < \varepsilon\),此时称在正无穷处函数有极限\(l\),记为
\[ f(+\infty) = \lim \limits_{x \to +\infty} f(x) = l \]
或简单记作
\[ f(x) \to l (x \to +\infty) \]

类似地可以定义\(f(-\infty) = \lim \limits_{x \to -\infty} f(x) = l\)

定义2:自变量趋于\(\infty\)的极限

若对\(\forall \varepsilon>0, \exists A > 0\),使得当\(|x| > A\)时,有\(|f(x) - l| < \varepsilon\),此时称当\(x\)趋于无穷时,函数有极限\(l\),记为
\[ f(\infty) = \lim \limits_{x \to \infty} f(x) = l \]
或简单记作
\[ f(x) \to l (x \to \infty) \]

定理1

\(\lim \limits_{x \to \infty} f(x) = l\)当且仅当
\[ f(-\infty) = f(+\infty) = l \]

证:必要性和充分性都由定义显然。
Q.E.D.

定义3:无穷大

\(x_0\)是一个实数,函数\(f(x)\)\(x_0\)的一个近旁(可能除\(x_0\)之外)有定义,若对\(\forall A>0, \exists \delta > 0\),使得当\(0< |x - x_0| < \delta\)时,有\(|f(x)| > A\),则称函数\(f\)趋向于无穷大,记作
\[ \lim \limits_{x \to x_0} f(x) = \infty \]
或者
\[ f(x) \to \infty (x \to x_0) \]

类似地可以定义

\[ \begin{aligned} \lim \limits_{x \to x_0} f(x) = +\infty \quad \lim \limits_{x \to x_0} f(x) = -\infty \\ \lim \limits_{x \to -\infty} f(x) = \infty \quad \lim \limits_{x \to +\infty} f(x) = \infty \end{aligned} \]

等等

定义4:无穷小

\(x_0\)是一个实数,函数\(f(x)\)\(x_0\)的一个近旁(可能除\(x_0\)之外)有定义,若对\(\forall \varepsilon>0, \exists \delta > 0\),使得当\(0< |x - x_0| < \delta\)时,有\(|f(x)| < \varepsilon\),则称函数\(f\)趋向于无穷小,记作
\[ \lim \limits_{x \to x_0} f(x) = 0 \]
或者
\[ f(x) \to 0 (x \to x_0) \]

类似地可以定义

\[ \lim \limits_{x \to -\infty} f(x) = 0 \quad \lim \limits_{x \to +\infty} f(x) = 0 \]

等等

定义5

设当\(x \to x_0\)时,函数\(f\)\(g\)都是无穷小,并且\(g\)\(x_0\)的一个无穷小近旁(除\(x_0\)外)不等于0
(1)如果\(\lim \limits_{x \to x_0} \frac{f(x)}{g(x)} = 0\),则称\(f\)是比\(g\)更高阶的无穷小;
(2) 如果\(\lim \limits_{x \to x_0} \frac{f(x)}{g(x)} = l \ne 0\),则称\(f\)\(g\)是同阶的无穷小;
(3) 如果\(\lim \limits_{x \to x_0} \frac{f(x)}{g(x)} = 1\),则称\(f\)\(g\)是等价的无穷小,记作
\[ f \sim g \quad (x \to x_0) \]
(4) 当\(x \to x_0\)时,如果\(f\)\((x-x_0)^\alpha\)是同阶无穷小,则称\(f\)\(\alpha\)阶的无穷小

类似地,可以定义,如果\(f\)\(g\)都是无穷大

(1) 如果\(\lim \limits_{x \to x_0} \frac{f(x)}{g(x)} = 0\),则称\(g\)是比\(f\)更高阶的无穷大;
(2) 如果\(\lim \limits_{x \to x_0} \frac{f(x)}{g(x)} = l \ne 0\),则称\(f\)\(g\)是同阶的无穷大;
(3) 如果\(\lim \limits_{x \to x_0} \frac{f(x)}{g(x)} = 1\),则称\(f\)\(g\)是等价的无穷大

定理2

如果当\(x \to x_0\)\(x_0\)可以是\(\pm\infty\))时,\(f,g\)是等价的无穷小或无穷大,则
(1) \(\lim \limits_{x \to x_0} f(x) h(x) = \lim \limits_{x \to x_0} g(x)h(x)\)
(2) \(\lim \limits_{x \to x_0} \frac{f(x)}{h(x)} = \lim \limits_{x \to x_0} \frac{g(x)}{h(x)}\)

证:(1) \(\lim \limits_{x \to x_0} f(x) h(x) = \lim \limits_{x \to x_0} g(x) h(x) \frac{f(x)}{g(x)} = \lim \limits_{x \to x_0} g(x) h(x)\)
(2) 证明与(1)一样。

Q.E.D.

定义6:\(O\)\(o\)表示法

设函数\(f\)\(g\)\(x_0\)的近旁(\(x_0\)除外)有定义,并且\(g(x)\ne 0\)
(1)当\(x \to x_0\),若比值\(f(x)/g(x)\)保持有界,即存在一个正常数\(M\),使得\(|f(x)|\le M|g(x)|\),就用\(f(x) = O(g(x))(x\to x_0)\)来表示;
(2)当\(x \to x_0\),若比值\(f(x)/g(x)\)是一个无穷小,即
\[ \lim \limits_{x \to x_0} \frac{f(x)}{g(x)} = 0 \]
就用\(f(x) = o(g(x))(x\to x_0)\)表示
特别地,\(f(x)=O(1)(x\to x_0)\)表示有界的函数,\(g(x)=o(1)(x \to x_0)\)表示一个无穷小。