0%

函数极限一:函数极限定义与基本性质

定义1:函数在某点处极限

设函数\(f\)在点\(x_0\)的近旁有定义,但\(x_0\)这一点自身可以是例外,设\(l\)是一个实数,如果对\(\forall \varepsilon > 0\)\(\exists \delta>0\),使得对一切满足等式\(0 < |x-x_0| < \delta\)都有
\[ |f(x) - l| < \varepsilon \]
则称当\(x\)趋于点\(x_0\)时函数\(f\)有极限\(l\),记作
\[ \lim \limits_{x \to x_0} f(x) = l \]
也可以记作
\[ f(x) \to l (x \to x_0) \]

定理1

函数\(f\)\(x_0\)处有极限\(l\)的充分必要条件是,对任何一个收敛于\(x_0\)的数列\(\{x_n \ne x_0 : n=1,2,3,\cdots\}\),有数列\(\{f(x_n)\}\)有极限\(l\)

证:必要性。设\(\lim \limits_{x \to x_0} f(x)= l\),则对任给的\(\varepsilon>0\),存在一个\(\delta > 0\),使得当\(0 < |x - x_0| < \delta\),有\(|f(x) - l| < \varepsilon\),对于取定的\(\delta\),由于\(\lim \limits_{n \to \infty} x_n = x_0\),所以存在\(N \in \mathbb{N^+}\),使得当\(n > N\)时,有\(0 < |x_n - x_0| < \delta\),从而有
\[ |f(x_n) - l| < \varepsilon \]
所以\(\lim \limits_{n \to \infty} f(x_n) = l\)
充分性。反证法,假设\(\lim \limits_{x \to x_0} f(x) = l\)不成立,即存在\(\varepsilon_0 > 0\),使得对任意的正整数\(n\),存在点\(x_n\),使得当\(0 < |x_n - x_0| < \frac{1}{n}\),有\(|f(x_n) - l| \ge \varepsilon_0 > 0\),从而找到了一个数列\(\{x_n \ne x_0: n=1,2,3,\cdots\}\),虽然它收敛于\(x_0\),但是\(\lim \limits_{n \to \infty} f(x_n) \ne l\)

定理2:函数极限唯一性

\(\lim \limits_{x \to x_0} f(x)\)存在,则它是唯一的

证:若\(\lim \limits_{x \to x_0} f(x)\)存在,可知对任意收敛于\(x_0\)的数列\(\{x_n \ne x_0 : n=1,2,3,\cdots\}\),有
\[ \lim \limits_{n\to\infty} f(x_n) = \lim \limits_{x \to x_0} f(x) \]
而数列极限是唯一的,所以函数极限也是唯一的。
Q.E.D.

定理3

\(f\)\(x_0\)处有极限,则\(f\)\(x_0\)的近旁是有界的,也就是说存在整数\(M\),实数\(\delta > 0\),使得当\(0 < |x - x_0| < \delta\)时,有\(|f(x)| < M\)

证:设\(\lim \limits_{x \to x_0} f(x) = l\)。由函数极限定义可知,对\(1 > 0\),存在\(\delta > 0\),使得当\(0 < |x - x_0| < \delta\)时,有
\[ |f(x) - l| < 1 \]
从而有
\[ |f(x)| \le |l| + |f(x) - l| < 1 + |l| \]
从而令\(M = 1 + |l|\)就满足条件了。
Q.E.D.

定理4:函数极限四则运算

\(\lim \limits_{x \to x_0} f(x)\)\(\lim \limits_{x \to x_0}g(x)\)存在,那么
(1)\(\lim \limits_{x \to x_0} (f \pm g)(x) = \lim \limits_{x \to x_0} f(x) \pm \lim \limits_{x \to x_0} g(x)\)
(2)\(\lim \limits_{x \to x_0} fg(x) = \lim \limits_{x \to x_0} f(x) \cdot \lim \limits_{x \to x_0} g(x)\)
(3)\(\lim \limits_{x \to x_0} \frac{f}{g}(x) = \frac{\lim \limits_{x \to x_0} f(x)}{\lim \limits_{x \to x_0} g(x)}\),其中\(\lim \limits_{x \to x_0} g(x) \ne 0\)

证:由定理1和数列极限的四则运算很容易证明
Q.E.D.

定理5:夹逼原理

设函数\(f,g\)\(h\)在点\(x_0\)的近旁(点\(x_0\)自身可能是例外)满足不等式
\[ f(x) \le h(x) \le g(x) \]
如果\(f\)\(g\)\(x_0\)处有相同的极限\(l\),那么函数\(h\)\(x_0\)处也有极限\(l\)

证:由定理1和数列极限夹逼原理很容易证明
Q.E.D.

定理6

设存在\(r>0\),使得当\(0<|x-x_0|<r\)时,有不等式\(f(x) \le g(x)\)恒成立,又设这两个函数\(x_0\)处都有极限,那么
\[ \lim \limits_{x \to x_0} f(x) \le \lim \limits_{x \to x_0} g(x) \]

证:由定理1和数列极限大小关系很容易证明
Q.E.D.

定理7:Cauchy收敛原理

函数\(f\)\(x_0\)处有极限当且仅当对\(\forall \varepsilon > 0\)\(\exists \delta > 0\),使得对\(\forall x_1,x_2 \in B_\delta(\check x_0)\),有\(|f(x_1) - f(x_2)| < \varepsilon\)

证:必要性。设\(\lim \limits_{x \to x_0} f(x) = l\),可知对\(\forall \varepsilon > 0\)\(\exists \delta > 0\),使得当\(x \in B_\delta(\check x_0)\)时,有
\[ |f(x) - l| < \frac{\varepsilon}{2} \]
所以任取\(x_1,x_2 \in B_\delta(\check x_0)\),有
\[ \begin{aligned} |f(x_1) - l| < \frac{\varepsilon}{2} \\ |f(x_2) - 1| < \frac{\varepsilon}{2} \end{aligned} \]
显然有
\[ |f(x_1) - f(x_2)| < |f(x_1) - l| + |l - f(x_2)| < \varepsilon \]
充分性。设\(\{x_n \ne x_0, n \in \mathbb{N^{*}}\}\)是任意一个收敛于\(x_0\)的数列,可知对取定的\(\delta\),存在\(N \in \mathbb{N^+}\),使得当\(m,n>N\)时,有\(0<|x_n - x_0| < \delta, 0<|x_m - x_0| < \delta\),此时有
\[ |f(x_n) - f(x_m)| < \varepsilon \]
可知\(\{f(x_n)\}\)是基本列,由数列的Cauchy收敛原理可知,数列\(\{f(x_n)\}\)收敛,不妨设该数列收敛于\(l_x\)
若能证明无论\(\{x_n\}\)怎么取,数列\(\{f(x_n)\}\)收敛于相同的点,则再由定理1可知,函数\(f\)\(x_0\)出也收敛。不妨设\(\{y_n\}\)是另一个收敛于\(x_0\)的数列,自然数列\(\{f(y_n)\}\)也收敛,不妨设收敛于\(l_y\),构造数列\(\{z_n\}\)
\[ x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\cdots \]
可知\(z_n \ne x_0(n \in \mathbb{N^+})\),且\(z_n \to x_0( n \to \infty)\),可知数列\(\{f(z_n)\}\)也有极限,记为\(l\),又因为\(\{f(x_n)\}\)\(\{f(y_n)\}\)都是\(\{f(z_n)\}\)的子列,所以有
\[ l_x = l_y = l \]
Q.E.D.

定理8

\(\lim \limits_{x \to x_0} f(x) = l,\lim \limits_{t \to t_0} g(t) = x_0\),如果在\(t_0\)的某个邻域\(B_\eta(t_0)\)内有\(g(t) \ne x_0\),则
\[ \lim \limits_{t \to t_0} f(g(t)) = l \]

证。由\(\lim \limits_{x \to x_0} f(x) = l\),可知对\(\forall \varepsilon > 0, \exists \delta > 0\),使得\(0 < |x-x_0| < \delta\),有\(|f(x) - l| < \varepsilon\);对给定的\(\delta>0\),由\(\lim \limits_{t \to t_0} g(t) = x_0\),可知存在\(\eta_1 > 0\),使得\(0<|t - t_0| < \eta_1\)时,有\(0< |g(t) - x_0| < \delta\),从而有\(|f(g(t)) - l| < \varepsilon\),取\(\sigma = \min(\eta, \eta_1)\),即对\(\forall \varepsilon > 0, \exists \sigma > 0\),使得\(0< |t-t_0| < \sigma\)时,有\(|f(g(t)) - l| < \varepsilon\)

Q.E.D.

定义2:单边极限

设函数\(f\)\((x_0,x_0+r)\)\(r\)是一个确定的正数)上有定义,若\(\forall \varepsilon > 0, \exists \delta \in (0, r)\),使得当\(0 < x - x_0 < \delta\)时,有
\[ |f(x) - l| < \varepsilon \]
则称\(l\)\(f\)\(x_0\)处的右极限,表示为
\[ l = \lim \limits_{x \to x_0^+} f(x) = l \]
在右极限存在的情况下,也将右极限记为\(f(x_0+)\)

类似地,可以定义\(f\)\(x_0\)处的左极限\(f(x_0-) = \lim \limits_{x \to x_0^-} f(x)\);左右极限统称为单边极限。

定理9

函数\(f\)\(x_0\)的某个去心邻域内处有定义,则\(\lim \limits_{x \to x_0} f(x)\)存在的充分必要条件是
\[ f(x_0+) = f(x_0-) \]

证明有极限与左右极限的定义显然。